Interpretable Contrastive Monte Carlo Tree Search Reasoning
- URL: http://arxiv.org/abs/2410.01707v3
- Date: Wed, 25 Dec 2024 13:32:54 GMT
- Title: Interpretable Contrastive Monte Carlo Tree Search Reasoning
- Authors: Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, Lijie Wen,
- Abstract summary: We propose SC-MCTS: a novel Monte Carlo Tree Search (MCTS) reasoning algorithm for Large Language Models (LLMs)
We show that SC-MCTS significantly improves both reasoning accuracy and speed.
We outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step reasoning dataset using Llama-3.1-70B with SC-MCTS*.
- Score: 25.11379135302235
- License:
- Abstract: We propose SC-MCTS*: a novel Monte Carlo Tree Search (MCTS) reasoning algorithm for Large Language Models (LLMs), significantly improves both reasoning accuracy and speed. Our motivation comes from: 1. Previous MCTS LLM reasoning works often overlooked its biggest drawback--slower speed compared to CoT; 2. Previous research mainly used MCTS as a tool for LLM reasoning on various tasks with limited quantitative analysis or ablation studies of its components from reasoning interpretability perspective. 3. The reward model is the most crucial component in MCTS, however previous work has rarely conducted in-depth study or improvement of MCTS's reward models. Thus, we conducted extensive ablation studies and quantitative analysis on components of MCTS, revealing the impact of each component on the MCTS reasoning performance of LLMs. Building on this, (i) we designed a highly interpretable reward model based on the principle of contrastive decoding and (ii) achieved an average speed improvement of 51.9% per node using speculative decoding. Additionally, (iii) we improved UCT node selection strategy and backpropagation used in previous works, resulting in significant performance improvement. We outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step reasoning dataset using Llama-3.1-70B with SC-MCTS*. Our code is available at https://github.com/zitian-gao/SC-MCTS.
Related papers
- MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation [17.432401371613903]
We propose a resource-efficient, System-2 thinking framework for code correctness evaluation.
MCTS-Judge uses Monte Carlo Tree Search to decompose problems into simpler, multi-perspective evaluations.
High-precision, unit-test-level reward mechanism encourages the Large Language Model to perform line-by-line analysis.
arXiv Detail & Related papers (2025-02-18T02:55:48Z) - MME-CoT: Benchmarking Chain-of-Thought in Large Multimodal Models for Reasoning Quality, Robustness, and Efficiency [63.23935582919081]
Chain-of-Thought (CoT) has significantly enhanced the reasoning capabilities of Large Language Models (LLMs)
We introduce MME-CoT, a specialized benchmark evaluating the CoT reasoning performance of LMMs.
We conduct an in-depth analysis of state-of-the-art LMMs, uncovering several key insights.
arXiv Detail & Related papers (2025-02-13T18:59:46Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)
We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)
With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)
However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?
In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising approach to harnessing the power of pre-trained models for sequential tasks.
We propose a Scalable Low-Rank Adaptation (S-LoRA) method for CL (in particular class incremental learning), which incrementally decouples the learning of the direction and magnitude of LoRA parameters.
Our theoretical and empirical analysis demonstrates that S-LoRA tends to follow a low-loss trajectory that converges to an overlapped low-loss region, resulting in an excellent stability-plasticity trade-off in CL.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment [0.0]
Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems.
This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task.
arXiv Detail & Related papers (2024-09-25T05:04:53Z) - THOUGHTSCULPT: Reasoning with Intermediate Revision and Search [45.55992387270442]
We present THOUGHTSCULPT, a general reasoning and search method for tasks with outputs that can be decomposed into words.
THOUGHTSCULPT explores a search tree of potential solutions using Monte Carlo Tree Search (MCTS), building solutions one action at a time and evaluating according to any domain-specific components.
Empirically, THOUGHTSCULPT outperforms state-of-the-art reasoning methods across three challenging tasks.
arXiv Detail & Related papers (2024-04-09T02:53:14Z) - AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential
Reasoning Ability [29.1826948551409]
AQA-Bench is a novel benchmark to assess the sequential reasoning capabilities of large language models.
We build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search.
Our investigations reveal several interesting findings.
arXiv Detail & Related papers (2024-02-14T18:59:33Z) - Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis [70.78170766633039]
We address the need for means of assessing MTS forecasting proposals reliably and fairly.
BasicTS+ is a benchmark designed to enable fair, comprehensive, and reproducible comparison of MTS forecasting solutions.
We apply BasicTS+ along with rich datasets to assess the capabilities of more than 45 MTS forecasting solutions.
arXiv Detail & Related papers (2023-10-09T19:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.