論文の概要: Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
- arxiv url: http://arxiv.org/abs/2410.01720v1
- Date: Sat, 12 Oct 2024 14:44:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:43:48.710883
- Title: Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
- Title(参考訳): LLMポストトライニングにおける合成データの理論的理解に向けて:リバース・ブートネックの視点から
- Authors: Zeyu Gan, Yong Liu,
- Abstract要約: 学習後モデルの一般化能力は生成モデルから得られる情報ゲインによって決定されることを示す。
本稿では,GGMIによる一般化ゲインの概念を導入し,一般化ゲインと情報ゲインの関係を明らかにする。
この分析は、合成データ生成の理論基盤として機能し、後学習モデルの一般化能力との関係をさらに強調する。
- 参考スコア(独自算出の注目度): 9.590540796223715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic data has become a pivotal resource in post-training tasks for large language models (LLMs) due to the scarcity of high-quality, specific data. While various methods have been developed to generate synthetic data, there remains a discernible gap between the practical effects of synthetic data and our theoretical comprehension. To address this challenge, we commence by presenting a detailed modeling of the prevalent synthetic data generation process. Building upon this modeling, we demonstrate that the generalization capability of the post-trained model is critically determined by the information gain derived from the generative model, as analyzed from a novel reverse-bottleneck perspective. Moreover, we introduce the concept of Generalization Gain via Mutual Information (GGMI) and elucidate the relationship between generalization gain and information gain. This analysis serves as a theoretical foundation for synthetic data generation and further highlights its connection with the generalization capability of post-trained models, offering an understanding about the design of synthetic data generation techniques and the optimization of the post-training process. We open source our code through an anonymous GitHub repository at https://anonymous.4open.science/r/Understanding-Synthetic.
- Abstract(参考訳): 合成データは、高品質な特定のデータの不足により、大規模言語モデル(LLM)のポストトレーニングタスクにおいて重要なリソースとなっている。
合成データを生成するための様々な方法が開発されているが、合成データの実践的効果と理論的理解との間には、明確なギャップが残っている。
この課題に対処するために、我々は、一般的な合成データ生成プロセスの詳細なモデリングを提示し始める。
このモデルに基づいて, 学習後モデルの一般化能力は, 生成モデルから得られる情報ゲインによって決定されることを示す。
さらに、相互情報(GGMI)を介して一般化ゲインの概念を導入し、一般化ゲインと情報ゲインの関係を明らかにする。
この分析は、合成データ生成の理論基盤として機能し、ポストトレーニング後のモデルの一般化能力との関係をさらに強調し、合成データ生成技術の設計とポストトレーニングプロセスの最適化に関する理解を提供する。
私たちはコードをhttps://anonymous.4open.science/r/Understanding-Synthetic.comの匿名GitHubリポジトリを通じてオープンソースにしています。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - zGAN: An Outlier-focused Generative Adversarial Network For Realistic Synthetic Data Generation [0.0]
ブラックスワン」は古典的な機械学習モデルの性能に挑戦している。
本稿では、外部特性を持つ合成データを生成する目的で開発されたzGANモデルアーキテクチャの概要について述べる。
リアルな合成データ生成の有望な結果と、モデル性能のアップリフト能力を示す。
論文 参考訳(メタデータ) (2024-10-28T07:55:11Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
不均衡なデータと急激な相関は、機械学習とデータサイエンスにおける一般的な課題である。
過度に表現されていないクラスのインスタンス数を人工的に増加させるオーバーサンプリングは、これらの課題に対処するために広く採用されている。
我々は,大規模言語モデルの能力を活用して,少数グループを対象とした高品質な合成データを生成する,体系的なオーバーサンプリング手法であるOPALを紹介する。
論文 参考訳(メタデータ) (2024-06-05T21:24:26Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Utility Theory of Synthetic Data Generation [12.511220449652384]
本稿では,統計的学習フレームワークにおける実用理論の確立により,実践と理論のギャップを埋める。
合成データに基づいてトレーニングされたモデルの一般化とランキングの2つのユーティリティメトリクスを考慮に入れている。
論文 参考訳(メタデータ) (2023-05-17T07:49:16Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
合成から現実への変換学習は,実タスクのための合成画像と接地真実アノテーションを用いた事前学習を行うフレームワークである。
合成画像はデータの不足を克服するが、事前訓練されたモデルで微調整性能がどのようにスケールするかは定かではない。
我々は、合成事前学習データの様々なタスク、モデル、複雑さにおける学習曲線を一貫して記述する、単純で一般的なスケーリング法則を観察する。
論文 参考訳(メタデータ) (2021-08-25T02:29:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。