Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks
- URL: http://arxiv.org/abs/2410.01744v2
- Date: Thu, 3 Oct 2024 15:57:05 GMT
- Title: Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks
- Authors: Mengzhao Jia, Wenhao Yu, Kaixin Ma, Tianqing Fang, Zhihan Zhang, Siru Ouyang, Hongming Zhang, Meng Jiang, Dong Yu,
- Abstract summary: Leopard is a vision-language model for handling vision-language tasks involving multiple text-rich images.
First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.
Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
- Score: 62.758680527838436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose Leopard, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Related papers
- FTII-Bench: A Comprehensive Multimodal Benchmark for Flow Text with Image Insertion [7.23608073306791]
Flow Text with Image Insertion task requires LVLMs to simultaneously possess outstanding abilities in image comprehension, instruction understanding, and long-text interpretation.
We introduce the Flow Text with Image Insertion Benchmark (FTII-Bench), which includes 318 high-quality Chinese image-text news articles and 307 high-quality English image-text news articles, covering 10 different news domains.
We evaluate 9 open-source and 2 closed-source LVLMs as well as 2 CLIP-based models.
arXiv Detail & Related papers (2024-10-16T13:38:31Z) - AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding [96.01726275876548]
We present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions.
We devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images.
Our model is capable of processing images with resolutions up to $1008times 1008$.
arXiv Detail & Related papers (2024-08-30T03:16:49Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINS is a Text-Rich image INStruction dataset.
It contains 39,153 text-rich images, captions, and 102,437 questions.
We introduce a Language-vision Reading Assistant (LaRA) which is good at understanding textual content within images.
arXiv Detail & Related papers (2024-06-10T18:52:37Z) - StrucTexTv3: An Efficient Vision-Language Model for Text-rich Image Perception, Comprehension, and Beyond [68.0107158115377]
We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images.
We enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning.
Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks.
arXiv Detail & Related papers (2024-05-31T16:55:04Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion [36.06457895469353]
UNIMO-G is a conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs.
It excels in both text-to-image generation and zero-shot subject-driven synthesis.
arXiv Detail & Related papers (2024-01-24T11:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.