ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2502.08391v1
- Date: Wed, 12 Feb 2025 13:28:46 GMT
- Title: ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification
- Authors: Jiangbo Shi, Chen Li, Tieliang Gong, Yefeng Zheng, Huazhu Fu,
- Abstract summary: Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI)
We propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification.
- Score: 52.405499816861635
- License:
- Abstract: Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI) with giga-pixel size and hierarchical image context in digital pathology. However, these methods heavily depend on a substantial number of bag-level labels and solely learn from the original slides, which are easily affected by variations in data distribution. Recently, vision language model (VLM)-based methods introduced the language prior by pre-training on large-scale pathological image-text pairs. However, the previous text prompt lacks the consideration of pathological prior knowledge, therefore does not substantially boost the model's performance. Moreover, the collection of such pairs and the pre-training process are very time-consuming and source-intensive.To solve the above problems, we propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification. Specifically, we propose a dual-scale visual descriptive text prompt based on the frozen large language model (LLM) to boost the performance of VLM effectively. To transfer the VLM to process WSI efficiently, for the image branch, we propose a prototype-guided patch decoder to aggregate the patch features progressively by grouping similar patches into the same prototype; for the text branch, we introduce a context-guided text decoder to enhance the text features by incorporating the multi-granular image contexts. Extensive studies on three multi-cancer and multi-center subtyping datasets demonstrate the superiority of ViLa-MIL.
Related papers
- A Chain-of-Thought Subspace Meta-Learning for Few-shot Image Captioning with Large Vision and Language Models [17.144311122664508]
A large-scale vision and language model that has been pretrained on massive data encodes visual and linguistic prior.
We propose a chain-of-thought (CoT) meta-learning scheme as a multi-step image captioning procedure to better imitate how humans describe images.
arXiv Detail & Related papers (2025-02-19T18:35:43Z) - MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification [19.29480118378639]
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels.
This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification.
arXiv Detail & Related papers (2025-02-11T09:42:13Z) - Advancing Myopia To Holism: Fully Contrastive Language-Image Pre-training [30.071860810401933]
This paper advances contrastive language-image pre-training (CLIP) into one novel holistic paradigm.
We use image-to-text captioning to generate multi-texts for each image, from multiple perspectives, granularities, and hierarchies.
Our holistic CLIP significantly outperforms existing CLIP, including image-text retrieval, open-vocabulary classification, and dense visual tasks.
arXiv Detail & Related papers (2024-11-30T11:27:58Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopard is a vision-language model for handling vision-language tasks involving multiple text-rich images.
First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.
Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - LightCLIP: Learning Multi-Level Interaction for Lightweight
Vision-Language Models [45.672539931681065]
We propose a multi-level interaction paradigm for training lightweight CLIP models.
An auxiliary fusion module injecting unmasked image embedding into masked text embedding is proposed.
arXiv Detail & Related papers (2023-12-01T15:54:55Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - VL-BEiT: Generative Vision-Language Pretraining [107.25298505511184]
We introduce a vision-language foundation model called VL-BEiT, which is a bidirectional multimodal Transformer learned by generative pretraining.
Specifically, we perform masked vision-language modeling on image-text pairs, masked language modeling on texts, and masked image modeling on images.
arXiv Detail & Related papers (2022-06-02T16:14:19Z) - Single-Stream Multi-Level Alignment for Vision-Language Pretraining [103.09776737512078]
We propose a single stream model that aligns the modalities at multiple levels.
We achieve this using two novel tasks: symmetric cross-modality reconstruction and a pseudo-labeled key word prediction.
We demonstrate top performance on a set of Vision-Language downstream tasks such as zero-shot/fine-tuned image/text retrieval, referring expression, and VQA.
arXiv Detail & Related papers (2022-03-27T21:16:10Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.