AI Horizon Scanning, White Paper p3395, IEEE-SA. Part I: Areas of Attention
- URL: http://arxiv.org/abs/2410.01808v1
- Date: Fri, 13 Sep 2024 18:00:01 GMT
- Title: AI Horizon Scanning, White Paper p3395, IEEE-SA. Part I: Areas of Attention
- Authors: Marina Cortês, Andrew R. Liddle, Christos Emmanouilidis, Anthony E. Kelly, Ken Matusow, Ragu Ragunathan, Jayne M. Suess, George Tambouratzis, Janusz Zalewski, David A. Bray,
- Abstract summary: This manuscript is the first of a series of White Papers informing the development of IEEE-SA's p3995: Standard for the Implementation of Safeguards, Controls, and Preventive Techniques for Artificial Intelligence (AI) Models'
In this first horizon-scanning we identify key attention areas for standards activities in AI.
We examine different principles for regulatory efforts, and review notions of accountability, privacy, data rights and mis-use.
- Score: 0.22470290096767004
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative Artificial Intelligence (AI) models may carry societal transformation to an extent demanding a delicate balance between opportunity and risk. This manuscript is the first of a series of White Papers informing the development of IEEE-SA's p3995: `Standard for the Implementation of Safeguards, Controls, and Preventive Techniques for Artificial Intelligence (AI) Models', Chair: Marina Cort\^{e}s (https://standards.ieee.org/ieee/3395/11378/). In this first horizon-scanning we identify key attention areas for standards activities in AI. We examine different principles for regulatory efforts, and review notions of accountability, privacy, data rights and mis-use. As a safeguards standard we devote significant attention to the stability of global infrastructures and consider a possible overdependence on cloud computing that may result from densely coupled AI components. We review the recent cascade-failure-like Crowdstrike event in July 2024, as an illustration of potential impacts on critical infrastructures from AI-induced incidents in the (near) future. It is the first of a set of articles intended as White Papers informing the audience on the standard development. Upcoming articles will focus on regulatory initiatives, technology evolution and the role of AI in specific domains.
Related papers
- AI Horizon Scanning -- White Paper p3395, IEEE-SA. Part III: Technology Watch: a selection of key developments, emerging technologies, and industry trends in Artificial Intelligence [0.3277163122167434]
Generative Artificial Intelligence (AI) technologies are in a phase of unprecedented rapid development following the landmark release of Chat-GPT.
As the deployment of AI products rises geometrically, considerable attention is being given to the threats and opportunities that AI technologies offer.
This manuscript is the third of a series of White Papers informing the development of IEEE-SA's p3995 it Standard for the Implementation of Safeguards, Controls, and Preventive Techniques for Artificial Intelligence Models'
arXiv Detail & Related papers (2024-11-05T19:04:42Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Artificial Intelligence Index Report 2024 [15.531650534547945]
The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI)
The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on AI.
This year's edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.
arXiv Detail & Related papers (2024-05-29T20:59:57Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - How VADER is your AI? Towards a definition of artificial intelligence
systems appropriate for regulation [41.94295877935867]
Recent AI regulation proposals adopt AI definitions affecting ICT techniques, approaches, and systems that are not AI.
We propose a framework to score how validated as appropriately-defined for regulation (VADER) an AI definition is.
arXiv Detail & Related papers (2024-02-07T17:41:15Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making.
The integration of KGs with neuronal learning is currently a topic of active research.
This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination.
arXiv Detail & Related papers (2023-10-30T12:51:52Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.