論文の概要: Image-to-Image Translation Based on Deep Generative Modeling for Radiotherapy Synthetic Dataset Creation
- arxiv url: http://arxiv.org/abs/2410.01828v1
- Date: Tue, 17 Sep 2024 11:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 14:45:01.797992
- Title: Image-to-Image Translation Based on Deep Generative Modeling for Radiotherapy Synthetic Dataset Creation
- Title(参考訳): 放射線治療合成データセット作成のための深部生成モデルに基づく画像から画像への変換
- Authors: Olga Glazunova, Cecile J. A. Wolfs, Frank Verhaegen,
- Abstract要約: 本研究の目的は、深部生成モデルに基づく画像画像変換(I2I)による合成EPIDデータの改善である。
この強化された合成データは、放射線治療における自動エラー検出とエラー分類のためのニューラルネットワークのトレーニングのような下流タスクを改善することが期待されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: Radiotherapy uses precise doses of radiation to treat cancer, requiring accurate verification, e.g. using the Electronic Portal Imaging Device (EPID), to guide treatment. To develop an effective artificial intelligence (AI) model for error detection and treatment verification, a large and well-annotated dataset of EPID images is needed, however, acquiring such high quality real data is difficult. While synthetic EPID data could be a viable alternative, it is critical to ensure that this data is as realistic as possible to effectively train an accurate and reliable AI model. The measurement uncertainty that is not modeled in EPID predictions but is present on real measured EPID images can hinder downstream tasks such as error detection and classification. Our research aims to improve synthetic EPID data through image-to-image (I2I) translation based on deep generative modeling. Approach: A dataset of 989 predicted EPID images and corresponding measured EPID images was used. We evaluate both paired and unpaired generative modeling approaches for this task. For the former, we introduce a novel modification of Variational Autoencoder (VAE) to I2I, a method that, to the best of our knowledge, has not been previously explored for this task. For the latter, we use UNsupervised Image-to-Image Translation Networks (UNIT). Results: Our results show that both models achieved some degree of I2I translation, with our novel modification of the VAE model outperforming the UNIT model in improving key metrics (mean absolute error: 4.1 cGy vs 6.4 cGy; relative dose difference in-field: 2.5% vs 5.5%; absolute dose difference in-field: 5.3 cGy vs 10.8 cGy). Significance: This enhanced synthetic data is expected to improve downstream tasks such as training neural networks for automated error detection and error classification in radiotherapy.
- Abstract(参考訳): 目的:放射線療法はがん治療に正確な放射線線量を使用し、例えば電子ポータルイメージングデバイス(EPID)を使用して治療をガイドする。
エラー検出・処理検証に有効な人工知能(AI)モデルを開発するには,EPID画像の大規模かつ高精度なデータセットが必要であるが,そのような高品質な実データを取得することは困難である。
合成EPIDデータは有効な代替手段になり得るが、正確で信頼性の高いAIモデルを効果的にトレーニングするためには、このデータが可能な限り現実的であることを保証することが不可欠である。
EPID予測ではモデル化されていないが、実測EPID画像上に存在する測定の不確実性は、エラー検出や分類などの下流タスクを妨げる可能性がある。
本研究の目的は,画像から画像への変換(I2I)によって合成EPIDデータを改善することである。
アプローチ: 989個のEPID画像とそれに対応するEPID画像を用いた。
本稿では,この課題に対するペアモデルとペアモデルの両方の評価を行う。
前者に対しては,従来検討されていなかったI2Iに,変分オートエンコーダ(VAE)を改良した手法を導入する。
後者ではUNIT (UNsupervised Image-to- Image Translation Networks) を用いる。
結果: 両モデルともI2I翻訳の程度を達成し, UNITモデルよりも優れたVAEモデル (平均絶対誤差: 4.1 cGy vs 6.4 cGy, 相対線量差: 2.5% vs 5.5%, 絶対線量差: 5.3 cGy vs 10.8 cGy) が得られた。
意義: この強化された合成データは、自動エラー検出と放射線治療におけるエラー分類のためのニューラルネットワークのトレーニングなどの下流タスクを改善することが期待されている。
関連論文リスト
- Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
我々は物理に基づく合成画像とデータ生成装置を作成し、その結果、同等の精度(0.86)、リコール(0.63)、F1スコア(0.71)、エンジニアリング特性予測(R2=0.82)を実現する機械学習モデルを得た。
本研究は,合成データがMLの人間依存を排除し,画像毎に多くの特徴を検出する必要がある場合に,ドメイン認識の手段を提供することを示す。
論文 参考訳(メタデータ) (2024-08-02T20:15:15Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Bi-parametric prostate MR image synthesis using pathology and
sequence-conditioned stable diffusion [3.290987481767681]
テキストに条件付けされた多列前立腺MR画像のための画像合成機構を提案する。
我々は、ペア化されたデータに条件付けされた画像に条件付けされたペア化されたバイパラメトリック画像を生成する。
前立腺癌を疑う症例の2次元画像スライスを用いて本法の有効性を検証した。
論文 参考訳(メタデータ) (2023-03-03T17:24:39Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - Uncertainty-aware GAN with Adaptive Loss for Robust MRI Image
Enhancement [3.222802562733787]
条件付き生成逆数ネットワーク (GAN) は, 画像-画像-画像マッピングの学習において, 性能が向上している。
本稿では,(i)OODノイズデータに対するロバスト性を考慮した適応損失関数をモデル化し,(ii)予測におけるボクセル当たりの不確かさを推定するGANベースのフレームワークを提案する。
医用画像における2つの重要な応用として, (i) 磁気共鳴画像(MRI) 再構成 (ii) MRI のモダリティ伝搬について検討した。
論文 参考訳(メタデータ) (2021-10-07T11:29:03Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。