論文の概要: An Early-Stage Workflow Proposal for the Generation of Safe and Dependable AI Classifiers
- arxiv url: http://arxiv.org/abs/2410.01850v1
- Date: Tue, 1 Oct 2024 14:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 14:34:44.423959
- Title: An Early-Stage Workflow Proposal for the Generation of Safe and Dependable AI Classifiers
- Title(参考訳): 安全かつ依存可能なAI分類器生成のための早期ワークフローの提案
- Authors: Hans Dermot Doran, Suzana Veljanovska,
- Abstract要約: 資格のある安全で信頼性の高いAIモデルの生成と実行は、透明で、完全で、適応可能で、好ましい軽量ワークフローの定義を必要とする。
この初期段階の研究は、拡張されたONNXモデル記述に基づいて、そのようなワークフローを提案する。
ユースケースは、他のサードパーティのユースケースによって拡張されると思われる、このボディの1つの基盤を提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The generation and execution of qualifiable safe and dependable AI models, necessitates definition of a transparent, complete yet adaptable and preferably lightweight workflow. Given the rapidly progressing domain of AI research and the relative immaturity of the safe-AI domain the process stability upon which functionally safety developments rest must be married with some degree of adaptability. This early-stage work proposes such a workflow basing it on a an extended ONNX model description. A use case provides one foundations of this body of work which we expect to be extended by other, third party use-cases.
- Abstract(参考訳): 資格のある安全で信頼性の高いAIモデルの生成と実行は、透明で、完全で、適応可能で、好ましい軽量ワークフローの定義を必要とする。
AI研究の急速に進歩している領域と、セーフAIドメインの相対的な未成熟さを考えると、機能的に安全な開発が残っているプロセスの安定性は、ある程度の適応性で結婚しなければならない。
この初期段階の研究は、拡張されたONNXモデル記述に基づいて、そのようなワークフローを提案する。
ユースケースは、他のサードパーティのユースケースによって拡張されると思われる、このボディの1つの基盤を提供します。
関連論文リスト
- Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models [75.8161094916476]
本稿では,既存の画像分類能力向上のために,事前学習された視覚言語モデル(別名CLIPモデル)の開発方法について検討する。
自律走行とシーン認識データセットにおける視覚知覚能力の向上に関する実験は,提案手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-10-04T22:34:58Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Hybrid Convolutional Neural Networks with Reliability Guarantee [0.0]
我々は、AIモデルの信頼性を確保するために、よく知られた手法として冗長実行を提案する。
このジェネリックテクニックは、十分に文書化された安全性や信頼性を特徴としないAI加速器の応用範囲を拡張する。
論文 参考訳(メタデータ) (2024-05-08T15:39:38Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - Safe MDP Planning by Learning Temporal Patterns of Undesirable
Trajectories and Averting Negative Side Effects [27.41101006357176]
安全なMDP計画では、現在の状態と行動に基づくコスト関数が安全面を特定するためにしばしば使用される。
不完全なモデルに基づく操作は、しばしば意図しない負の副作用(NSE)を生じさせる
論文 参考訳(メタデータ) (2023-04-06T14:03:24Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Safe Active Dynamics Learning and Control: A Sequential
Exploration-Exploitation Framework [30.58186749790728]
本研究では,力学の不確実性の存在下での安全性を維持するための理論的に正当なアプローチを提案する。
我々のフレームワークは、常に全ての制約の高確率満足度を保証します。
この理論解析は、オンライン適応能力を改善する最終層メタラーニングモデルの2つの正則化を動機付けている。
論文 参考訳(メタデータ) (2020-08-26T17:39:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。