論文の概要: A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices
- arxiv url: http://arxiv.org/abs/2410.01854v1
- Date: Tue, 1 Oct 2024 19:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 14:34:44.418308
- Title: A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices
- Title(参考訳): 低演算デバイスにおける葉画像からの植物病検出のための新しい特徴抽出モデル
- Authors: Rikathi Pal, Anik Basu Bhaumik, Arpan Murmu, Sanoar Hossain, Biswajit Maity, Soumya Sen,
- Abstract要約: 提案手法は,葉のイメージから頑健で識別可能な特徴を抽出するために,様々なタイプのディープラーニング技術を統合する。
このデータセットには、10種類のトマト病と1種類の健康な葉から1万枚の葉の写真が含まれています。
AlexNetの精度スコアは87%で、高速で軽量であり、組み込みシステムでの使用に適している。
- 参考スコア(独自算出の注目度): 2.1990652930491854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diseases in plants cause significant danger to productive and secure agriculture. Plant diseases can be detected early and accurately, reducing crop losses and pesticide use. Traditional methods of plant disease identification, on the other hand, are generally time-consuming and require professional expertise. It would be beneficial to the farmers if they could detect the disease quickly by taking images of the leaf directly. This will be a time-saving process and they can take remedial actions immediately. To achieve this a novel feature extraction approach for detecting tomato plant illnesses from leaf photos using low-cost computing systems such as mobile phones is proposed in this study. The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images. After the proposed feature extraction comparisons have been made on five cutting-edge deep learning models: AlexNet, ResNet50, VGG16, VGG19, and MobileNet. The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves. Experimental findings demonstrate that AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems and other low-processing devices like smartphones.
- Abstract(参考訳): 植物の病気は、生産的で安全な農業に重大な危険をもたらす。
植物病は早期かつ正確に検出でき、作物の損失や殺虫剤の使用を減らすことができる。
一方、伝統的な植物病の同定法は一般的に時間がかかり、専門的な専門知識を必要とする。
直接葉の写真を撮って病気を素早く検出できれば、農家にとって有益だろう。
これは時間の節約プロセスであり、即時に修正措置を取ることができます。
そこで本研究では,携帯電話などの低コストコンピューティングシステムを用いて,葉写真からトマトの病原体を検出するための特徴抽出手法を提案する。
提案手法は,葉のイメージから頑健で識別可能な特徴を抽出するために,様々なタイプのディープラーニング技術を統合する。
提案された機能抽出比較が、最先端の5つのディープラーニングモデル(AlexNet、ResNet50、VGG16、VGG19、MobileNet)で実施された。
このデータセットには、10種類のトマト病と1種類の健康な葉から1万枚の葉の写真が含まれています。
実験結果によると、AlexNetの精度は87%で、高速で軽量であり、組み込みシステムやスマートフォンなどの低処理デバイスでの使用に適している。
関連論文リスト
- Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
本稿ではトマト葉病検出のためのトランスフォーマーモデルTomFormerを紹介する。
本稿では,視覚変換器と畳み込みニューラルネットワークを組み合わせた融合モデルを用いて,トマト葉病の検出手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T20:47:23Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants [0.0]
Apple(アップル)の病気は、早期に診断されなかったとしても、大量の資源が失われ、感染したリンゴを消費する人間や動物に深刻な脅威をもたらす可能性がある。
Xception, InceptionResNet および MobileNet アーキテクチャのアンサンブルシステムを提案する。
このシステムは、マルチクラスとマルチラベルの分類において卓越した成果を上げており、大きなリンゴのプランテーションをリアルタイムで監視するために使用することができる。
論文 参考訳(メタデータ) (2022-10-01T15:40:04Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
植物病は世界の作物の損失の主な原因であり、世界経済に影響を及ぼす。
本研究では、植物病の同定のために、ビジョントランスフォーマーにより「PlantXViT」と呼ばれる畳み込みニューラルネットワークモデルが提案される。
提案したモデルは、わずか0.8万のトレーニング可能なパラメータを持つ軽量な構造であり、IoTベースのスマート農業サービスに適している。
論文 参考訳(メタデータ) (2022-07-16T12:05:06Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Less is More: Lighter and Faster Deep Neural Architecture for Tomato
Leaf Disease Classification [0.36700088931938835]
本研究は,トマト葉の病原体を検出するための,手軽な伝達学習に基づくアプローチを提案する。
効果的な前処理手法を用いて、照度補正による葉画像の高精細化を行い、分類を改良する。
提案アーキテクチャは99.30%の精度でモデルサイズ9.60MBと4.87M浮動小数点演算を実現している。
論文 参考訳(メタデータ) (2021-09-06T12:14:02Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
植物葉病の検出・分類のための機械学習手法を提案する。
私たちは、AWS SageMaker上でスケーラブルな転送学習を使用して、リアルタイムの実用的なユーザビリティのために、AWS DeepLensにインポートしています。
果実や野菜の健康・不健康な葉の広範な画像データセットに関する実験では,植物葉病のリアルタイム診断で98.78%の精度を示した。
論文 参考訳(メタデータ) (2020-09-09T05:23:34Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
本稿では,1)TruncatedRPNが正負値と負値のバランスをとること,2)Auto-lesion Blockが自動的に医療画像にカスタマイズされ,地域提案間の関係認識操作が組み込まれること,3)Relation Transferモジュールが意味的関係を組み込むこと,の3つのコンポーネントを含む新しいElixirNetを紹介した。
DeepLesionとKits19の実験では、ElixirNetの有効性が証明され、パラメータが少なくてFPNよりも感度と精度が向上した。
論文 参考訳(メタデータ) (2020-03-03T05:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。