Auction-Based Regulation for Artificial Intelligence
- URL: http://arxiv.org/abs/2410.01871v2
- Date: Mon, 03 Feb 2025 18:56:15 GMT
- Title: Auction-Based Regulation for Artificial Intelligence
- Authors: Marco Bornstein, Zora Che, Suhas Julapalli, Abdirisak Mohamed, Amrit Singh Bedi, Furong Huang,
- Abstract summary: Regulators have moved slowly to pick up the safety, bias, and legal debris left in the wake of broken AI deployment.
We propose an auction-based regulatory mechanism that provably incentivizes devices to deploy compliant models.
We show that our regulatory auction boosts compliance rates by 20% and participation rates by 15% compared to baseline regulatory mechanisms.
- Score: 28.86995747151915
- License:
- Abstract: In an era of "moving fast and breaking things", regulators have moved slowly to pick up the safety, bias, and legal debris left in the wake of broken Artificial Intelligence (AI) deployment. While there is much-warranted discussion about how to address the safety, bias, and legal woes of state-of-the-art AI models, rigorous and realistic mathematical frameworks to regulate AI are lacking. Our paper addresses this challenge, proposing an auction-based regulatory mechanism that provably incentivizes devices (i) to deploy compliant models and (ii) to participate in the regulation process. We formulate AI regulation as an all-pay auction where enterprises submit models for approval. The regulator enforces compliance thresholds and further rewards models exhibiting higher compliance than their peers. We derive Nash Equilibria demonstrating that rational agents will submit models exceeding the prescribed compliance threshold. Empirical results show that our regulatory auction boosts compliance rates by 20% and participation rates by 15% compared to baseline regulatory mechanisms, outperforming simpler frameworks that merely impose minimum compliance standards.
Related papers
- Beyond Benchmarks: On The False Promise of AI Regulation [13.125853211532196]
We show that effective scientific regulation requires a causal theory linking observable test outcomes to future performance.
We show that deep learning models, which learn complex statistical patterns from training data without explicit causal mechanisms, preclude such guarantees.
arXiv Detail & Related papers (2025-01-26T22:43:07Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
We introduce Deliberative Alignment, a new paradigm that teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering.
We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers.
arXiv Detail & Related papers (2024-12-20T21:00:11Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act [6.9060054915724]
The AI act is the European Union-wide regulation of AI systems.
We argue that uncertainty estimation should be a required component for deploying models in the real world.
arXiv Detail & Related papers (2024-08-20T23:59:51Z) - Certified Safe: A Schematic for Approval Regulation of Frontier AI [0.0]
An approval regulation scheme is one in which a firm cannot legally market, or in some cases develop, a product without explicit approval from a regulator.
This report proposes an approval regulation schematic for only the largest AI projects in which scrutiny begins before training and continues through to post-deployment monitoring.
arXiv Detail & Related papers (2024-08-12T15:01:03Z) - An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
We explore the applicability of approval regulation -- that is, regulation of a product that combines experimental minima with government licensure conditioned partially or fully upon that experimentation -- to the regulation of frontier AI.
There are a number of reasons to believe that approval regulation, simplistically applied, would be inapposite for frontier AI risks.
We conclude by highlighting the role of policy learning and experimentation in regulatory development.
arXiv Detail & Related papers (2024-08-01T17:54:57Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AI is a proposal designed with adaptability in mind.
It involves governments setting outcome-based targets for AI companies to achieve.
We warn that it is alarmingly easy to stumble on incentives which would prevent Regulatory Markets from achieving this goal.
arXiv Detail & Related papers (2023-03-06T14:42:05Z) - Regulating ChatGPT and other Large Generative AI Models [0.0]
Large generative AI models (LGAIMs) are rapidly transforming the way we communicate, illustrate, and create.
This paper will situate these new generative models in the current debate on trustworthy AI regulation.
It suggests a novel terminology to capture the AI value chain in LGAIM settings.
arXiv Detail & Related papers (2023-02-05T08:56:45Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data.
Pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably.
We propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework.
arXiv Detail & Related papers (2022-05-18T16:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.