The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act
- URL: http://arxiv.org/abs/2408.11249v1
- Date: Tue, 20 Aug 2024 23:59:51 GMT
- Title: The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act
- Authors: Matias Valdenegro-Toro, Radina Stoykova,
- Abstract summary: The AI act is the European Union-wide regulation of AI systems.
We argue that uncertainty estimation should be a required component for deploying models in the real world.
- Score: 6.9060054915724
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The AI act is the European Union-wide regulation of AI systems. It includes specific provisions for general-purpose AI models which however need to be further interpreted in terms of technical standards and state-of-art studies to ensure practical compliance solutions. This paper examines the AI act requirements for providers and deployers of general-purpose AI and further proposes uncertainty estimation as a suitable measure for legal compliance and quality assurance in training of such models. We argue that uncertainty estimation should be a required component for deploying models in the real world, and under the EU AI Act, it could fulfill several requirements for transparency, accuracy, and trustworthiness. However, generally using uncertainty estimation methods increases the amount of computation, producing a dilemma, as computation might go over the threshold ($10^{25}$ FLOPS) to classify the model as a systemic risk system which bears more regulatory burden.
Related papers
- Declare and Justify: Explicit assumptions in AI evaluations are necessary for effective regulation [2.07180164747172]
We argue that regulation should require developers to explicitly identify and justify key underlying assumptions about evaluations.
We identify core assumptions in AI evaluations, such as comprehensive threat modeling, proxy task validity, and adequate capability elicitation.
Our presented approach aims to enhance transparency in AI development, offering a practical path towards more effective governance of advanced AI systems.
arXiv Detail & Related papers (2024-11-19T19:13:56Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles.
The European Union (EU) Artificial Intelligence (AI) Act aims to address these challenges by establishing stringent norms and standards for AI systems.
This review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD.
arXiv Detail & Related papers (2024-08-30T12:01:06Z) - A Nested Model for AI Design and Validation [0.5120567378386615]
Despite the need for new regulations, there is a mismatch between regulatory science and AI.
A five-layer nested model for AI design and validation aims to address these issues.
arXiv Detail & Related papers (2024-06-08T12:46:12Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
This paper presents a methodology for interpreting the EU AI Act requirements for high-risk AI systems.
We first propose an extended product quality model for AI systems, incorporating attributes relevant to the Act not covered by current quality models.
We then propose a contract-based approach to derive technical requirements at the stakeholder level.
arXiv Detail & Related papers (2024-03-25T14:32:18Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Functional trustworthiness of AI systems by statistically valid testing [7.717286312400472]
The authors are concerned about the safety, health, and rights of the European citizens due to inadequate measures and procedures required by the current draft of the EU Artificial Intelligence (AI) Act.
We observe that not only the current draft of the EU AI Act, but also the accompanying standardization efforts in CEN/CENELEC, have resorted to the position that real functional guarantees of AI systems supposedly would be unrealistic and too complex anyways.
arXiv Detail & Related papers (2023-10-04T11:07:52Z) - Calibrating AI Models for Wireless Communications via Conformal
Prediction [55.47458839587949]
Conformal prediction is applied for the first time to the design of AI for communication systems.
This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees.
arXiv Detail & Related papers (2022-12-15T12:52:23Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.