Conformal Prediction Sets Can Cause Disparate Impact
- URL: http://arxiv.org/abs/2410.01888v2
- Date: Thu, 13 Feb 2025 19:02:40 GMT
- Title: Conformal Prediction Sets Can Cause Disparate Impact
- Authors: Jesse C. Cresswell, Bhargava Kumar, Yi Sui, Mouloud Belbahri,
- Abstract summary: We show that providing prediction sets can lead to disparate impact in decisions.
We propose to equalize set sizes across groups which empirically leads to lower disparate impact.
- Score: 4.61590049339329
- License:
- Abstract: Conformal prediction is a statistically rigorous method for quantifying uncertainty in models by having them output sets of predictions, with larger sets indicating more uncertainty. However, prediction sets are not inherently actionable; many applications require a single output to act on, not several. To overcome this limitation, prediction sets can be provided to a human who then makes an informed decision. In any such system it is crucial to ensure the fairness of outcomes across protected groups, and researchers have proposed that Equalized Coverage be used as the standard for fairness. By conducting experiments with human participants, we demonstrate that providing prediction sets can lead to disparate impact in decisions. Disquietingly, we find that providing sets that satisfy Equalized Coverage actually increases disparate impact compared to marginal coverage. Instead of equalizing coverage, we propose to equalize set sizes across groups which empirically leads to lower disparate impact.
Related papers
- Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.
We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict [0.5312303275762104]
We introduce a novel extension to conformal prediction algorithm which we call bin-conditional conformal prediction.
This method allows users to obtain individual-level prediction intervals for any arbitrary prediction model.
We apply the bin-conditional conformal prediction algorithm to forecast fatalities from armed conflict.
arXiv Detail & Related papers (2024-10-18T14:41:42Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
Conformal prediction is a statistical framework that generates prediction sets with a desired coverage guarantee.
We propose a novel algorithm named $textitSorted Adaptive Prediction Sets$ (SAPS)
SAPS discards all the probability values except for the maximum softmax probability.
arXiv Detail & Related papers (2023-10-10T08:54:14Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
We theoretically quantify the expected size of the prediction sets under the split conformal prediction framework.
As this precise formulation cannot usually be calculated directly, we derive point estimates and high-probability bounds interval.
We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.
arXiv Detail & Related papers (2023-06-12T17:22:57Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level.
We develop simultaneous conformal inference to account for data-dependent miscoverage levels.
arXiv Detail & Related papers (2023-04-12T20:56:43Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
In some cases, the performance of minority group can decrease while we reduce the coverage.
We show that such an unwanted behavior can be avoided if we can construct features satisfying the sufficiency criterion.
arXiv Detail & Related papers (2021-10-28T19:05:12Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.