論文の概要: One-step Noisy Label Mitigation
- arxiv url: http://arxiv.org/abs/2410.01944v1
- Date: Wed, 2 Oct 2024 18:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:54:27.584990
- Title: One-step Noisy Label Mitigation
- Title(参考訳): 1ステップノイズラベル緩和
- Authors: Hao Li, Jiayang Gu, Jingkuan Song, An Zhang, Lianli Gao,
- Abstract要約: ノイズラベルのトレーニング過程に対する有害な影響の軽減がますます重要になっている。
モデルに依存しないノイズラベル緩和パラダイムである1ステップアンチノイズ(OSA)を提案する。
我々はOSAの優位性を実証的に実証し、トレーニングの堅牢性の向上、タスク転送性の向上、デプロイメントの容易性、計算コストの削減を強調した。
- 参考スコア(独自算出の注目度): 86.57572253460125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical, as obtaining entirely clean or human-annotated samples for large-scale pre-training tasks is often impractical. Nonetheless, existing noise mitigation methods often encounter limitations in practical applications due to their task-specific design, model dependency, and significant computational overhead. In this work, we exploit the properties of high-dimensional orthogonality to identify a robust and effective boundary in cone space for separating clean and noisy samples. Building on this, we propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm that employs an estimator model and a scoring function to assess the noise level of input pairs through just one-step inference, a cost-efficient process. We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs across various benchmarks, models, and tasks. Our code is released at https://github.com/leolee99/OSA.
- Abstract(参考訳): 大規模な事前訓練作業のための完全クリーンまたは人為的なサンプルを取得することは、しばしば非現実的であるため、トレーニングプロセスにおけるノイズラベルの有害な影響を緩和することがますます重要になっている。
それにもかかわらず、既存のノイズ緩和手法は、タスク固有の設計、モデル依存性、計算オーバーヘッドが著しく大きいため、実用的な応用において制限に直面することが多い。
本研究では、高次元直交特性を利用して、円錐空間における頑健で効果的な境界を同定し、クリーンでノイズの多いサンプルを分離する。
そこで我々は,モデルに依存しない雑音ラベル緩和パラダイムである1ステップアンチノイズ (OSA) を提案し,そのモデルに推定器モデルとスコアリング関数を用いて,1ステップの推論で入力ペアの雑音レベルを評価する。
我々はOSAの優位性を実証的に実証し、トレーニングの堅牢性の向上、タスク転送性の向上、デプロイの容易性、各種ベンチマーク、モデル、タスク間の計算コストの削減を強調した。
私たちのコードはhttps://github.com/leolee99/OSAでリリースされています。
関連論文リスト
- Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Exploring Transferability for Randomized Smoothing [37.60675615521106]
本稿では,頑健なモデルを事前学習する手法を提案する。
クリーンな画像のみを微調整しても、驚くほど強力な認証精度が得られます。
論文 参考訳(メタデータ) (2023-12-14T15:08:27Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
トレーニングデータセットにノイズの多いラベルが存在することは、機械学習モデルのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、事前学習されたモデルの事前知識を頑健かつ効率的に伝達するTURNと呼ばれる新しいアルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-10-24T20:28:59Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
オープンセットノイズラベルは非毒性であり, 固有ノイズラベルに対するロバスト性にも寄与することを示した。
本研究では,動的雑音ラベル(ODNL)を用いたオープンセットサンプルをトレーニングに導入することで,シンプルかつ効果的な正規化を提案する。
論文 参考訳(メタデータ) (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。