Run-time Observation Interventions Make Vision-Language-Action Models More Visually Robust
- URL: http://arxiv.org/abs/2410.01971v1
- Date: Wed, 2 Oct 2024 19:29:24 GMT
- Title: Run-time Observation Interventions Make Vision-Language-Action Models More Visually Robust
- Authors: Asher J. Hancock, Allen Z. Ren, Anirudha Majumdar,
- Abstract summary: Vision-language-action (VLA) models trained on large-scale internet data and robot demonstrations have the potential to serve as generalist robot policies.
We introduce Bring Your Own VLA (BYOVLA): a run-time intervention scheme that dynamically identifies regions of the input image that the model is sensitive to.
We show that BYOVLA enables state-of-the-art VLA models to nearly retain their nominal performance in the presence of distractor objects and backgrounds.
- Score: 9.647148940880381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language-action (VLA) models trained on large-scale internet data and robot demonstrations have the potential to serve as generalist robot policies. However, despite their large-scale training, VLAs are often brittle to task-irrelevant visual details such as distractor objects or background colors. We introduce Bring Your Own VLA (BYOVLA): a run-time intervention scheme that (1) dynamically identifies regions of the input image that the model is sensitive to, and (2) minimally alters task-irrelevant regions to reduce the model's sensitivity using automated image editing tools. Our approach is compatible with any off the shelf VLA without model fine-tuning or access to the model's weights. Hardware experiments on language-instructed manipulation tasks demonstrate that BYOVLA enables state-of-the-art VLA models to nearly retain their nominal performance in the presence of distractor objects and backgrounds, which otherwise degrade task success rates by up to 40%. Website with additional information, videos, and code: https://aasherh.github.io/byovla/ .
Related papers
- Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)
LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.
We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - LADEV: A Language-Driven Testing and Evaluation Platform for Vision-Language-Action Models in Robotic Manipulation [7.8735930411335895]
Vision-Language-Action (VLA) models are an integrated solution for robotic manipulation tasks.
The data-driven nature of VLA models, combined with their lack of interpretability, makes the assurance of their effectiveness and robustness a challenging task.
We propose LADEV, a comprehensive and efficient platform specifically designed for evaluating VLA models.
arXiv Detail & Related papers (2024-10-07T16:49:16Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
We study the visual generalization capabilities of three existing robotic foundation models.
Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios.
We propose a gradual backbone reversal approach founded on model merging.
arXiv Detail & Related papers (2024-09-23T17:47:59Z) - Towards Testing and Evaluating Vision-Language-Action Models for Robotic Manipulation: An Empirical Study [7.8735930411335895]
Vision-language-action (VLA) models have attracted much attention regarding their potential to advance robotic manipulation.
Despite the end-to-end perception-control loop offered by the VLA models, there is a lack of comprehensive understanding of the capabilities of such models.
We present VLATest, a testing framework that automatically generates diverse robotic manipulation scenes to assess the performance of VLA models.
arXiv Detail & Related papers (2024-09-19T16:33:00Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.
Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.
We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-06-13T15:46:55Z) - Voila-A: Aligning Vision-Language Models with User's Gaze Attention [56.755993500556734]
We introduce gaze information as a proxy for human attention to guide Vision-Language Models (VLMs)
We propose a novel approach, Voila-A, for gaze alignment to enhance the interpretability and effectiveness of these models in real-world applications.
arXiv Detail & Related papers (2023-12-22T17:34:01Z) - Masked World Models for Visual Control [90.13638482124567]
We introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning.
We demonstrate that our approach achieves state-of-the-art performance on a variety of visual robotic tasks.
arXiv Detail & Related papers (2022-06-28T18:42:27Z) - VinVL: Revisiting Visual Representations in Vision-Language Models [96.39332942534368]
We develop an improved object detection model to provide object-centric representations of images.
New visual features significantly improve the performance across all vision language (VL) tasks.
We will release the new object detection model to public.
arXiv Detail & Related papers (2021-01-02T23:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.