OpenVLA: An Open-Source Vision-Language-Action Model
- URL: http://arxiv.org/abs/2406.09246v3
- Date: Thu, 5 Sep 2024 19:46:34 GMT
- Title: OpenVLA: An Open-Source Vision-Language-Action Model
- Authors: Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, Chelsea Finn,
- Abstract summary: We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
- Score: 131.74098076670103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large policies pretrained on a combination of Internet-scale vision-language data and diverse robot demonstrations have the potential to change how we teach robots new skills: rather than training new behaviors from scratch, we can fine-tune such vision-language-action (VLA) models to obtain robust, generalizable policies for visuomotor control. Yet, widespread adoption of VLAs for robotics has been challenging as 1) existing VLAs are largely closed and inaccessible to the public, and 2) prior work fails to explore methods for efficiently fine-tuning VLAs for new tasks, a key component for adoption. Addressing these challenges, we introduce OpenVLA, a 7B-parameter open-source VLA trained on a diverse collection of 970k real-world robot demonstrations. OpenVLA builds on a Llama 2 language model combined with a visual encoder that fuses pretrained features from DINOv2 and SigLIP. As a product of the added data diversity and new model components, OpenVLA demonstrates strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate across 29 tasks and multiple robot embodiments, with 7x fewer parameters. We further show that we can effectively fine-tune OpenVLA for new settings, with especially strong generalization results in multi-task environments involving multiple objects and strong language grounding abilities, and outperform expressive from-scratch imitation learning methods such as Diffusion Policy by 20.4%. We also explore compute efficiency; as a separate contribution, we show that OpenVLA can be fine-tuned on consumer GPUs via modern low-rank adaptation methods and served efficiently via quantization without a hit to downstream success rate. Finally, we release model checkpoints, fine-tuning notebooks, and our PyTorch codebase with built-in support for training VLAs at scale on Open X-Embodiment datasets.
Related papers
- DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control [7.626715427413578]
Vision-language-action (VLA) models have shown promise for generalizable robot skills.
Current VLA models often focus on scaling the vision-language model (VLM) component, while the action space representation remains a critical bottleneck.
This paper introduces DexVLA, a novel framework designed to enhance the efficiency and generalization capabilities ofVLAs for complex, long-horizon tasks.
arXiv Detail & Related papers (2025-02-09T11:25:56Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.
We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.
We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.
We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)
We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - Run-time Observation Interventions Make Vision-Language-Action Models More Visually Robust [9.647148940880381]
Vision-language-action (VLA) models trained on large-scale internet data and robot demonstrations have the potential to serve as generalist robot policies.
We introduce Bring Your Own VLA (BYOVLA): a run-time intervention scheme that dynamically identifies regions of the input image that the model is sensitive to.
We show that BYOVLA enables state-of-the-art VLA models to nearly retain their nominal performance in the presence of distractor objects and backgrounds.
arXiv Detail & Related papers (2024-10-02T19:29:24Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
We study the visual generalization capabilities of three existing robotic foundation models.
Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios.
We propose a gradual backbone reversal approach founded on model merging.
arXiv Detail & Related papers (2024-09-23T17:47:59Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.
Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.
We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.