論文の概要: Normalizing Flow-Based Metric for Image Generation
- arxiv url: http://arxiv.org/abs/2410.02004v2
- Date: Sat, 5 Oct 2024 11:31:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:34:57.638059
- Title: Normalizing Flow-Based Metric for Image Generation
- Title(参考訳): 画像生成のためのフローベース計量の正規化
- Authors: Pranav Jeevan, Neeraj Nixon, Amit Sethi,
- Abstract要約: 正規化フローに基づいて生成画像の現実性を評価するための2つの新しい評価指標を提案する。
正規化フローは正確な確率を計算するために使用できるため、提案したメトリクスは、与えられた領域からの実際の画像の分布とどのように密接に一致しているかを評価する。
- 参考スコア(独自算出の注目度): 4.093503153499691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose two new evaluation metrics to assess realness of generated images based on normalizing flows: a simpler and efficient flow-based likelihood distance (FLD) and a more exact dual-flow based likelihood distance (D-FLD). Because normalizing flows can be used to compute the exact likelihood, the proposed metrics assess how closely generated images align with the distribution of real images from a given domain. This property gives the proposed metrics a few advantages over the widely used Fr\'echet inception distance (FID) and other recent metrics. Firstly, the proposed metrics need only a few hundred images to stabilize (converge in mean), as opposed to tens of thousands needed for FID, and at least a few thousand for the other metrics. This allows confident evaluation of even small sets of generated images, such as validation batches inside training loops. Secondly, the network used to compute the proposed metric has over an order of magnitude fewer parameters compared to Inception-V3 used to compute FID, making it computationally more efficient. For assessing the realness of generated images in new domains (e.g., x-ray images), ideally these networks should be retrained on real images to model their distinct distributions. Thus, our smaller network will be even more advantageous for new domains. Extensive experiments show that the proposed metrics have the desired monotonic relationships with the extent of image degradation of various kinds.
- Abstract(参考訳): 本稿では,フローの正規化に基づく生成画像の現実性を評価するための2つの新しい評価指標を提案する。
正規化フローは正確な確率を計算するために使用できるため、提案したメトリクスは、与えられた領域からの実際の画像の分布とどのように密接に一致しているかを評価する。
この特性は、広く使われているFr'echet開始距離(FID)や他の最近の指標に対して、提案された指標にいくつかの利点を与える。
第一に、提案されたメトリクスは、FIDに必要な数万のイメージと対照的に、(平均的に収束する)数百のイメージしか必要としない。
これにより、トレーニングループ内のバリデーションバッチなど、生成したイメージの小さなセットでさえ、確実な評価が可能になる。
第二に、提案したメトリックを計算するために使用されるネットワークは、FIDを計算するために使用されるInception-V3と比較して、桁違いに少ないパラメータを持つため、計算効率が向上する。
新しい領域(例えば、X線画像)で生成された画像の現実性を評価するためには、これらのネットワークを実画像上で再トレーニングして、個々の分布をモデル化することが理想である。
したがって、私たちの小さなネットワークは、新しいドメインに対してさらに有利になるでしょう。
大規模な実験により,提案手法は様々な種類の画像劣化の程度と所望のモノトニックな関係を持つことが示された。
関連論文リスト
- FLD+: Data-efficient Evaluation Metric for Generative Models [4.093503153499691]
本稿では,より信頼性が高く,データ効率が高く,計算効率が高く,新しい領域に適応可能な生成画像の品質を評価するための新しい指標を提案する。
提案した計量は、任意の領域からの画像の密度(正確には対数のような)の計算を可能にする正規化フローに基づいている。
論文 参考訳(メタデータ) (2024-11-23T15:12:57Z) - Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval [3.2109665109975696]
ANNEALは、類似した、異種のイメージペアで構成された、小さくて情報的なトレーニングセットを作成することを目的としている。
不確実性と多様性の基準を組み合わせることにより、画像対の情報性を評価する。
このアノテート方式は、ランド・ユース・ランド・カバー・クラスラベルによるアノテート画像と比較して、アノテーションコストを著しく削減する。
論文 参考訳(メタデータ) (2024-06-14T15:08:04Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
Inverted Image Pyramid Networks (PIIP) と呼ばれる新しいネットワークアーキテクチャを提案する。
私たちの中核となる考え方は、パラメータサイズの異なるモデルを使用して、画像ピラミッドの解像度の異なるレベルを処理することです。
PIIPは、オブジェクト検出、セグメンテーション、画像分類などのタスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - Rethinking FID: Towards a Better Evaluation Metric for Image Generation [43.66036053597747]
Inception Distanceは、実画像のInception-v3特徴分布とアルゴリズムによって生成された画像の距離を推定する。
インセプションの貧弱な表現は、現代のテキスト・画像モデルによって生成されるリッチで多様なコンテンツ、不正確な正規性仮定、そしてサンプルの複雑さによって引き起こされる。
よりリッチなCLIP埋め込みとガウスRBFカーネルとの最大平均差距離に基づく代替のCMMDを提案する。
論文 参考訳(メタデータ) (2023-11-30T19:11:01Z) - Compare learning: bi-attention network for few-shot learning [6.559037166322981]
距離学習と呼ばれる数ショットの学習手法の1つは、画像のペアが同じカテゴリに属しているかどうかを判断するために、まず遠距離計量を学習することで、この課題に対処する。
本稿では, インスタンスの埋め込みの類似性を正確に, グローバルかつ効率的に測定できる, Bi-attention Network という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T07:39:10Z) - The Role of ImageNet Classes in Fr\'echet Inception Distance [33.47601032254247]
インセプション距離(Inception Distance, FID)は、画像の2つの分布間の距離を定量化する指標である。
FIDは基本的に、ImageNetクラス確率の集合間の距離である。
以上の結果から, FID改善の過度な解釈に留意し, より知覚的に均一な分布指標の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2022-03-11T15:50:06Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConvは標準的な2Dコンボリューションの簡単な修正であり、任意のマスクを画像の各位置の重みに適用することができる。
我々は,パラメータを共有するが生成順序が異なる分布推定器のアンサンブルを学習し,全画像密度推定の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-22T17:59:07Z) - Asymmetric Distribution Measure for Few-shot Learning [82.91276814477126]
メトリクスベースの少数ショット画像分類は、クエリ画像とサポートクラスの関係を測定することを目的としている。
本稿では,非対称分布測定(ADM)ネットワークを提案する。
5ドルの$-wayの$-shotタスクで最先端のメソッドよりも3.02%の$と1.56%の$を達成しています。
論文 参考訳(メタデータ) (2020-02-01T06:41:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。