DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning
- URL: http://arxiv.org/abs/2410.02023v2
- Date: Sun, 06 Apr 2025 18:40:55 GMT
- Title: DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning
- Authors: Jiaqing Xie, Tianfan Fu,
- Abstract summary: DeepProtein is a user-friendly deep learning library tailored for protein-related tasks.<n>It enables researchers to seamlessly address protein data with cutting-edge deep learning models.<n>DeepProt-T5, a series of fine-tuned Prot-T5-based models, achieve state-of-the-art performance on four benchmark tasks.
- Score: 11.832967054454546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has deeply influenced protein science, enabling breakthroughs in predicting protein properties, higher-order structures, and molecular interactions. This paper introduces DeepProtein, a comprehensive and user-friendly deep learning library tailored for protein-related tasks. It enables researchers to seamlessly address protein data with cutting-edge deep learning models. To assess model performance, we establish a benchmark evaluating different deep learning architectures across multiple protein-related tasks, including protein function prediction, subcellular localization prediction, protein-protein interaction prediction, and protein structure prediction. Furthermore, we introduce DeepProt-T5, a series of fine-tuned Prot-T5-based models that achieve state-of-the-art performance on four benchmark tasks, while demonstrating competitive results on six of others. Comprehensive documentation and tutorials are available which could ensure accessibility and support reproducibility. Built upon the widely used drug discovery library DeepPurpose, DeepProtein is publicly available at https://github.com/jiaqingxie/DeepProtein.
Related papers
- Protein Large Language Models: A Comprehensive Survey [71.65899614084853]
Protein-specific large language models (Protein LLMs) are revolutionizing protein science by enabling more efficient protein structure prediction, function annotation, and design.
This work provides the first comprehensive overview of Protein LLMs, covering their architectures, training datasets, evaluation metrics, and diverse applications.
arXiv Detail & Related papers (2025-02-21T19:22:10Z) - Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
Computational protein science is dedicated to revealing knowledge and developing applications within the protein sequence-structure-function paradigm.
Recently, Language Models (pLMs) have emerged as a milestone in AI due to their unprecedented language processing & generalization capability.
arXiv Detail & Related papers (2025-01-17T16:21:18Z) - A Survey of Deep Learning Methods in Protein Bioinformatics and its Impact on Protein Design [3.5897534810405403]
Deep learning has demonstrated remarkable performance in fields such as computer vision and natural language processing.
It has been increasingly applied in recent years to the data-rich domain of protein sequences with great success.
The performance improvements achieved by deep learning unlocks new possibilities in the field of protein bioinformatics.
arXiv Detail & Related papers (2025-01-02T05:21:34Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We introduce a novel class of Deep Sparse Coding (DSC) models.
We derive convergence rates for CNNs in their ability to extract sparse features.
Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for
Highly Accurate Protein-Ligand Binding Affinity Prediction [0.0]
We present a novel deep learning architecture consisting of a 3-dimensional convolutional neural network and two graph convolutional networks.
HAC-Net obtains state-of-the-art results on the PDBbind v.2016 core set.
We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction.
arXiv Detail & Related papers (2022-12-23T16:14:53Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data [0.0]
We demonstrate and compare the performance of several deep learning frameworks, including novel bi-directional LSTM and convolutional models, on widely available sequencing data.
Our results show that our deep learning models deliver superior performance to classical machine learning methods, with the convolutional architecture providing the most impressive inference performance.
arXiv Detail & Related papers (2022-07-14T06:11:32Z) - PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence
Understanding [17.770721291090258]
PEER is a comprehensive and multi-task benchmark for Protein sEquence undERstanding.
It provides a set of diverse protein understanding tasks including protein function prediction, protein localization prediction, protein structure prediction, and protein-ligand interaction prediction.
We evaluate different types of sequence-based methods for each task including traditional feature engineering approaches, different sequence encoding methods as well as large-scale pre-trained protein language models.
arXiv Detail & Related papers (2022-06-05T05:21:56Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - DIPS-Plus: The Enhanced Database of Interacting Protein Structures for
Interface Prediction [2.697420611471228]
We present DIPS-Plus, an enhanced, feature-rich dataset of 42,112 complexes for geometric deep learning of protein interfaces.
The previous version of DIPS contains only the Cartesian coordinates and types of the atoms comprising a given protein complex.
DIPS-Plus now includes a plethora of new residue-level features including protrusion indices, half-sphere amino acid compositions, and new profile hidden Markov model (HMM)-based sequence features for each amino acid.
arXiv Detail & Related papers (2021-06-06T23:56:27Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.