Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions
- URL: http://arxiv.org/abs/2410.02028v2
- Date: Thu, 17 Oct 2024 08:31:32 GMT
- Title: Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions
- Authors: Qian Ruan, Ilia Kuznetsov, Iryna Gurevych,
- Abstract summary: Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
- Score: 62.12545440385489
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classification tasks remains underexplored. To address this gap, we propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches. We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task. Our extensive experiments and systematic comparisons with various training approaches and a representative selection of LLMs yield new insights into their application for EIC. We investigate the generalizability of these findings on five further classification tasks. To demonstrate the proposed methods and address the data shortage for empirical edit analysis, we use our best-performing EIC model to create Re3-Sci2.0, a new large-scale dataset of 1,780 scientific document revisions with over 94k labeled edits. The quality of the dataset is assessed through human evaluation. The new dataset enables an in-depth empirical study of human editing behavior in academic writing. We make our experimental framework, models and data publicly available.
Related papers
- Can Models Help Us Create Better Models? Evaluating LLMs as Data Scientists [41.94295877935867]
We present a benchmark for large language models designed to tackle one of the most knowledge-intensive tasks in data science.
We demonstrate that the FeatEng of our proposal can cheaply and efficiently assess the broad capabilities of LLMs.
arXiv Detail & Related papers (2024-10-30T17:59:01Z) - Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models [33.488331159912136]
Instruction tuning plays a critical role in aligning large language models (LLMs) with human preference.
Data assessment and selection methods have been proposed in the fields of natural language processing (NLP) and deep learning.
We present a comprehensive review on existing literature of data assessment and selection especially for instruction tuning of LLMs.
arXiv Detail & Related papers (2024-08-04T16:50:07Z) - Why do you cite? An investigation on citation intents and decision-making classification processes [1.7812428873698407]
This study emphasizes the importance of trustfully classifying citation intents.
We present a study utilizing advanced Ensemble Strategies for Citation Intent Classification (CIC)
One of our models sets as a new state-of-the-art (SOTA) with an 89.46% Macro-F1 score on the SciCite benchmark.
arXiv Detail & Related papers (2024-07-18T09:29:33Z) - Enriched BERT Embeddings for Scholarly Publication Classification [0.13654846342364302]
The NSLP 2024 FoRC Task I addresses this challenge organized as a competition.
The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.
arXiv Detail & Related papers (2024-05-07T09:05:20Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Understanding Survey Paper Taxonomy about Large Language Models via
Graph Representation Learning [2.88268082568407]
We develop a method to automatically assign survey papers to a taxonomy.
Our work indicates that leveraging graph structure information on co-category graphs can significantly outperform the language models.
arXiv Detail & Related papers (2024-02-16T02:21:59Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.