Enriched BERT Embeddings for Scholarly Publication Classification
- URL: http://arxiv.org/abs/2405.04136v1
- Date: Tue, 7 May 2024 09:05:20 GMT
- Title: Enriched BERT Embeddings for Scholarly Publication Classification
- Authors: Benjamin Wolff, Eva Seidlmayer, Konrad U. Förstner,
- Abstract summary: The NSLP 2024 FoRC Task I addresses this challenge organized as a competition.
The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.
- Score: 0.13654846342364302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid expansion of academic literature and the proliferation of preprints, researchers face growing challenges in manually organizing and labeling large volumes of articles. The NSLP 2024 FoRC Shared Task I addresses this challenge organized as a competition. The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.This paper presents our results. Initially, we enrich the dataset (containing English scholarly articles sourced from ORKG and arXiv), then leverage different pre-trained language Models (PLMs), specifically BERT, and explore their efficacy in transfer learning for this downstream task. Our experiments encompass feature-based and fine-tuned transfer learning approaches using diverse PLMs, optimized for scientific tasks, including SciBERT, SciNCL, and SPECTER2. We conduct hyperparameter tuning and investigate the impact of data augmentation from bibliographic databases such as OpenAlex, Semantic Scholar, and Crossref. Our results demonstrate that fine-tuning pre-trained models substantially enhances classification performance, with SPECTER2 emerging as the most accurate model. Moreover, enriching the dataset with additional metadata improves classification outcomes significantly, especially when integrating information from S2AG, OpenAlex and Crossref. Our best-performing approach achieves a weighted F1-score of 0.7415. Overall, our study contributes to the advancement of reliable automated systems for scholarly publication categorization, offering a potential solution to the laborious manual curation process, thereby facilitating researchers in efficiently locating relevant resources.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - Accelerated materials language processing enabled by GPT [5.518792725397679]
We develop generative transformer (GPT)-enabled pipelines for materials language processing.
First, we develop a GPT-enabled document classification method for screening relevant documents.
Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance.
Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations.
arXiv Detail & Related papers (2023-08-18T07:31:13Z) - Good Data, Large Data, or No Data? Comparing Three Approaches in
Developing Research Aspect Classifiers for Biomedical Papers [19.1408856831043]
We investigate the impact of different datasets on model performance for the crowd-annotated CODA-19 research aspect classification task.
Our results indicate that using the PubMed 200K RCT dataset does not improve performance for the CODA-19 task.
arXiv Detail & Related papers (2023-06-07T22:56:53Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.