論文の概要: Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models
- arxiv url: http://arxiv.org/abs/2410.02055v1
- Date: Wed, 2 Oct 2024 22:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:15:24.931013
- Title: Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models
- Title(参考訳): スタイルあいまいさ損失を用いた拡散モデルの美学改善
- Authors: James Baker,
- Abstract要約: 創造的なテキスト・ツー・イメージモデルを教えるには、スタイルの曖昧さの損失を使用する必要がある。
本研究では,拡散モデルを用いて,創造性を近似するスタイルあいまいさ学習の目的について検討する。
スタイルのあいまいさの損失で訓練されたモデルは,ベースライン拡散モデルやGANよりも優れた画像を生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Teaching text-to-image models to be creative involves using style ambiguity loss. In this work, we explore using the style ambiguity training objective, used to approximate creativity, on a diffusion model. We then experiment with forms of style ambiguity loss that do not require training a classifier or a labeled dataset, and find that the models trained with style ambiguity loss can generate better images than the baseline diffusion models and GANs. Code is available at https://github.com/jamesBaker361/clipcreate.
- Abstract(参考訳): 創造的なテキスト・ツー・イメージモデルを教えるには、スタイルの曖昧さの損失を使用する必要がある。
本研究では,拡散モデルを用いて,創造性を近似するためのあいまいさ学習の目的について検討する。
次に、分類器やラベル付きデータセットを訓練する必要のないスタイルあいまいさ損失の形式を実験し、スタイルあいまいさ損失で訓練されたモデルがベースライン拡散モデルやGANよりも優れた画像を生成することを発見した。
コードはhttps://github.com/jamesBaker361/clipcreateで入手できる。
関連論文リスト
- Using Multimodal Foundation Models and Clustering for Improved Style Ambiguity Loss [0.0]
我々は、分類器やラベル付きデータセットを訓練する必要のない創造性を近似するために使用される、スタイルあいまいさトレーニングの新たな形態を探求する。
創造性と斬新さを保ちながら、人間の判断のための自動測定値に基づいて従来の手法を改善した新たな手法を見いだす。
論文 参考訳(メタデータ) (2024-06-20T15:43:13Z) - MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
本研究では,一組のカスタマイズスタイルを終末的に追従することで,画像の合成を可能にする方法であるMuseumMakerを提案する。
新しいカスタマイズスタイルに直面すると、新しい画像生成のためのトレーニングデータのスタイルを抽出し学習するスタイル蒸留損失モジュールを開発する。
これは、新しい訓練画像の内容による学習バイアスを最小限に抑え、少数ショット画像によって引き起こされる破滅的な過適合問題に対処することができる。
論文 参考訳(メタデータ) (2024-04-25T13:51:38Z) - Measuring Style Similarity in Diffusion Models [118.22433042873136]
画像からスタイル記述子を理解し抽出するためのフレームワークを提案する。
我々のフレームワークは、スタイルが画像の主観的特性であるという洞察を用いてキュレートされた新しいデータセットで構成されている。
また、テキスト・ツー・イメージ・モデルのトレーニングデータセットで使用される画像に対して、生成した画像のスタイルに使用できるスタイル属性記述子を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T17:58:30Z) - DEADiff: An Efficient Stylization Diffusion Model with Disentangled
Representations [64.43387739794531]
現在のエンコーダベースのアプローチは、スタイルの転送中にテキスト・ツー・イメージモデルのテキスト制御性を著しく損なう。
この問題に対処するために、以下の2つの戦略を用いてDEADiffを紹介します。
DeAiffは、テキスト・ツー・イメージモデルに固有のテキスト制御性と、参照画像とスタイルの類似性との間の最適な視覚的スタイリング結果と最適なバランスを得る。
論文 参考訳(メタデータ) (2024-03-11T17:35:23Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - Text-to-Image Diffusion Models are Zero-Shot Classifiers [8.26990105697146]
ゼロショット分類器として評価する手法を提案し,テキスト・画像拡散モデルについて検討した。
本手法を安定拡散およびイメージnに適用し,モデル知識のきめ細かい面を探索する。
彼らは幅広いゼロショット画像分類データセットでCLIPと競合する。
論文 参考訳(メタデータ) (2023-03-27T14:15:17Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z) - Style-Agnostic Reinforcement Learning [9.338454092492901]
本稿では,スタイル伝達と逆学習の両方を用いて,スタイル非依存表現を学習する新しい手法を提案する。
本手法は,固有対向型生成器から生成される多様な画像スタイルでアクターを訓練する。
提案手法は,Procgen and Distracting Control Suiteベンチマークにおける最先端の手法よりも,競争力や性能の向上が期待できる。
論文 参考訳(メタデータ) (2022-08-31T13:45:00Z) - Adversarial Style Augmentation for Domain Generalized Urban-Scene
Segmentation [120.96012935286913]
そこで本研究では,学習中にハードなスタイリング画像を生成可能な,新たな対向型拡張手法を提案する。
2つの合成から実のセマンティックセグメンテーションベンチマークの実験により、AdvStyleは目に見えない実領域におけるモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2022-07-11T14:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。