Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations
- URL: http://arxiv.org/abs/2410.02086v1
- Date: Wed, 2 Oct 2024 23:19:23 GMT
- Title: Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations
- Authors: Minoh Jeong, Min Namgung, Zae Myung Kim, Dongyeop Kang, Yao-Yi Chiang, Alfred Hero,
- Abstract summary: Multimodal learning plays a crucial role in enabling machine learning models to fuse and utilize diverse data sources.
Recent binding methods, such as ImageBind, typically use a fixed anchor modality to align multimodal data in the anchor modal embedding space.
We propose CentroBind, a simple yet powerful approach that eliminates the need for a fixed anchor.
- Score: 16.036997801745905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning plays a crucial role in enabling machine learning models to fuse and utilize diverse data sources, such as text, images, and audio, to support a variety of downstream tasks. A unified representation across various modalities is particularly important for improving efficiency and performance. Recent binding methods, such as ImageBind (Girdhar et al., 2023), typically use a fixed anchor modality to align multimodal data in the anchor modal embedding space. In this paper, we mathematically analyze the fixed anchor binding methods and uncover notable limitations: (1) over-reliance on the choice of the anchor modality, (2) failure to capture intra-modal information, and (3) failure to account for inter-modal correlation among non-anchored modalities. To address these limitations, we propose CentroBind, a simple yet powerful approach that eliminates the need for a fixed anchor; instead, it employs dynamically adjustable centroid-based anchors generated from all available modalities, resulting in a balanced and rich representation space. We theoretically demonstrate that our method captures three crucial properties of multimodal learning: intra-modal learning, inter-modal learning, and multimodal alignment, while also constructing a robust unified representation across all modalities. Our experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed method, showing that dynamic anchor methods outperform all fixed anchor binding methods as the former captures more nuanced multimodal interactions.
Related papers
- OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces [67.07083389543799]
We present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters.
Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together.
Experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications.
arXiv Detail & Related papers (2024-07-16T16:24:31Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
Self-supervised learning on large-scale multi-modal datasets allows learning semantically meaningful embeddings without relying on human annotations.
These methods often struggle to generalize well on out-of-domain data as they ignore the semantic structure present in modality-specific embeddings.
We propose a novel Semantic-Structure-Preserving Consistency approach to improve generalizability by preserving the modality-specific relationships in the joint embedding space.
arXiv Detail & Related papers (2023-08-24T20:46:48Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
We propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis.
Our model outperforms existing approaches on unaligned multimodal sequences and has strong performance on aligned multimodal sequences.
arXiv Detail & Related papers (2022-06-16T07:47:57Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
Most multi-modal machine learning methods require that all the modalities used for training are also available for testing.
To address this limitation, we aim to improve the testing performance of uni-modal systems using multiple modalities during training only.
The proposed multi-modal training framework uses cross-modal translation and correlation-based latent space alignment.
arXiv Detail & Related papers (2020-11-03T11:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.