論文の概要: DomainDynamics: Lifecycle-Aware Risk Timeline Construction for Domain Names
- arxiv url: http://arxiv.org/abs/2410.02096v1
- Date: Fri, 18 Oct 2024 02:59:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:55:37.046721
- Title: DomainDynamics: Lifecycle-Aware Risk Timeline Construction for Domain Names
- Title(参考訳): DomainDynamics: ドメイン名に対するライフサイクル対応のリスクタイムライン構築
- Authors: Daiki Chiba, Hiroki Nakano, Takashi Koide,
- Abstract要約: DomainDynamicsは、ライフサイクル段階を考慮してドメイン名のリスクを予測するように設計された新しいシステムである。
マルウェアやフィッシングインシデントから85,000以上の実際の悪意のあるドメインを含む実験で、DomainDynamicsは82.58%の検出率を獲得し、偽陽性率は0.41%だった。
- 参考スコア(独自算出の注目度): 2.6217304977339473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The persistent threat posed by malicious domain names in cyber-attacks underscores the urgent need for effective detection mechanisms. Traditional machine learning methods, while capable of identifying such domains, often suffer from high false positive and false negative rates due to their extensive reliance on historical data. Conventional approaches often overlook the dynamic nature of domain names, the purposes and ownership of which may evolve, potentially rendering risk assessments outdated or irrelevant. To address these shortcomings, we introduce DomainDynamics, a novel system designed to predict domain name risks by considering their lifecycle stages. DomainDynamics constructs a timeline for each domain, evaluating the characteristics of each domain at various points in time to make informed, temporal risk determinations. In an evaluation experiment involving over 85,000 actual malicious domains from malware and phishing incidents, DomainDynamics demonstrated a significant improvement in detection rates, achieving an 82.58\% detection rate with a low false positive rate of 0.41\%. This performance surpasses that of previous studies and commercial services, improving detection capability substantially.
- Abstract(参考訳): サイバー攻撃における悪意のあるドメイン名による永続的な脅威は、効果的な検出メカニズムの緊急の必要性を浮き彫りにしている。
従来の機械学習手法は、そのようなドメインを識別できるが、歴史的データに大きく依存しているため、しばしば偽陽性と偽陰性率に悩まされる。
従来のアプローチでは、ドメイン名の動的な性質、その目的と所有権が進化し、時代遅れまたは無関係なリスクアセスメントを生じさせる可能性がある。
このような欠点に対処するため,ドメイン名のリスクをライフサイクルの段階から予測する新しいシステムであるDomainDynamicsを紹介した。
DomainDynamicsは各ドメインのタイムラインを構築し、各ドメインの特徴を様々な点で評価し、情報的、時間的リスク決定を行う。
マルウェアやフィッシングインシデントから85,000以上の実際の悪意のあるドメインを含む評価実験において、DomainDynamicsは検出率を大幅に改善し、偽陽性率0.41\%の82.58\%を達成した。
この性能は以前の研究や商業サービスを上回るもので、検出能力を大幅に向上させる。
関連論文リスト
- DomainLynx: Leveraging Large Language Models for Enhanced Domain Squatting Detection [2.6217304977339473]
ドメイン・スクワットはインターネットのセキュリティにとって重大な脅威となり、攻撃者はますます高度な技術を用いている。
本研究では,Large Language Models (LLMs) を利用した新しい複合AIシステムであるDomainLynxを紹介した。
2億900万のドメインから34,359のスクワットドメインを検出し、ベースラインの手法を2.5倍上回った。
論文 参考訳(メタデータ) (2024-10-02T23:32:09Z) - Don't Get Hijacked: Prevalence, Mitigation, and Impact of Non-Secure DNS Dynamic Updates [1.135267457536642]
DNS動的更新は本質的に脆弱なメカニズムである。
非セキュアなDNS更新は、ゾーン中毒と呼ばれる新しいタイプの攻撃を受けやすいドメインを残します。
我々は,コンピュータセキュリティインシデント対応チームの通知を含む総合的なキャンペーンを実施した。
論文 参考訳(メタデータ) (2024-05-30T09:23:53Z) - Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
クロスドメイン感情分析における領域一般化の問題に焦点をあてる。
本稿では,ドメイン固有表現とドメイン不変表現をアンタングル化するバックドア調整に基づく因果モデルを提案する。
一連の実験は、我々のモデルの優れたパフォーマンスと堅牢性を示しています。
論文 参考訳(メタデータ) (2024-02-22T13:26:56Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
非教師なし領域適応(UDA)の設定下での解剖学的ランドマーク検出のための新しい枠組みを提案する。
このフレームワークは、自己学習とドメインの敵対的学習を活用して、適応中のドメインギャップに対処する。
脳波および肺のランドマーク検出実験は,領域間隙を広いマージンで低減し,他のUDA法より一貫して優れる手法の有効性を示した。
論文 参考訳(メタデータ) (2023-08-25T10:22:13Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Context-aware Domain Adaptation for Time Series Anomaly Detection [69.3488037353497]
時系列異常検出は、幅広い現実世界の応用において難しい課題である。
近年,類似分野の知識を活用するため,時系列領域適応への取り組みが進められている。
本研究では,コンテキストサンプリングと異常検出を併用した共同学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-15T02:28:58Z) - Out-of-Domain Robustness via Targeted Augmentations [90.94290420322457]
領域外一般化のためのデータ拡張設計の原理を考察する。
線形設定に関する理論的解析により動機付けを行い,対象拡大を提案する。
その結果,OOD性能は3.2~15.2ポイント向上した。
論文 参考訳(メタデータ) (2023-02-23T08:59:56Z) - Domain-incremental Cardiac Image Segmentation with Style-oriented Replay
and Domain-sensitive Feature Whitening [67.6394526631557]
M&Mは、各受信データセットから漸進的に学習し、時間が経つにつれて改善された機能で漸進的に更新する必要がある。
医学的シナリオでは、データのプライバシのため、過去のデータへのアクセスや保存が一般的に許可されないため、これは特に困難である。
本稿では,まず過去のドメイン入力を復元し,モデル最適化中に定期的に再生する新しいドメイン増分学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-09T13:07:36Z) - Improving Fake News Detection of Influential Domain via Domain- and
Instance-Level Transfer [16.886024206337257]
フェイクニュース検出(DITFEND)のためのドメインレベルおよびインスタンスレベルの転送フレームワークを提案する。
DITFENDは特定のターゲットドメインの性能を向上させることができる。
オンライン実験は、現実世界のシナリオにおいて、ベースモデルにさらなる改善をもたらすことを示している。
論文 参考訳(メタデータ) (2022-09-19T10:21:13Z) - Forget Less, Count Better: A Domain-Incremental Self-Distillation
Learning Benchmark for Lifelong Crowd Counting [51.44987756859706]
オフザシェルフ法は複数のドメインを扱うのにいくつかの欠点がある。
生涯クラウドカウンティングは、壊滅的な忘れを緩和し、一般化能力を改善することを目的としている。
論文 参考訳(メタデータ) (2022-05-06T15:37:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。