Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts
- URL: http://arxiv.org/abs/2410.02200v2
- Date: Thu, 30 Jan 2025 15:26:39 GMT
- Title: Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts
- Authors: Minh Le, Chau Nguyen, Huy Nguyen, Quyen Tran, Trung Le, Nhat Ho,
- Abstract summary: We study the theoretical foundations of prompt-based techniques for fine-tuning large pre-trained models.
Our study demonstrates that re parameterization is not merely an engineering trick but is grounded in deep theoretical foundations.
Our findings provide theoretical and empirical contributions, advancing the understanding of prompt-based methods and their underlying mechanisms.
- Score: 36.88984387787463
- License:
- Abstract: Prompt-based techniques, such as prompt-tuning and prefix-tuning, have gained prominence for their efficiency in fine-tuning large pre-trained models. Despite their widespread adoption, the theoretical foundations of these methods remain limited. For instance, in prefix-tuning, we observe that a key factor in achieving performance parity with full fine-tuning lies in the reparameterization strategy. However, the theoretical principles underpinning the effectiveness of this approach have yet to be thoroughly examined. Our study demonstrates that reparameterization is not merely an engineering trick but is grounded in deep theoretical foundations. Specifically, we show that the reparameterization strategy implicitly encodes a shared structure between prefix key and value vectors. Building on recent insights into the connection between prefix-tuning and mixture of experts models, we further illustrate that this shared structure significantly improves sample efficiency in parameter estimation compared to non-shared alternatives. The effectiveness of prefix-tuning across diverse tasks is empirically confirmed to be enhanced by the shared structure, through extensive experiments in both visual and language domains. Additionally, we uncover similar structural benefits in prompt-tuning, offering new perspectives on its success. Our findings provide theoretical and empirical contributions, advancing the understanding of prompt-based methods and their underlying mechanisms. Our code is publicly available at https://github.com/Minhchuyentoancbn/ReparamPrefix
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Towards Infinite-Long Prefix in Transformer [18.24137806007111]
We study the ability of Prompting and context-based fine-tuning methods to match the performance of full parameter fine-tuning.
We implement an algorithm that only needs to introduce and fine-tune a few extra trainable parameters instead of an infinite-long prefix.
Our method achieves superior or competitive performance compared to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA.
arXiv Detail & Related papers (2024-06-20T06:56:35Z) - Mixture of Experts Meets Prompt-Based Continual Learning [23.376460019465235]
This paper conducts a theoretical analysis to unravel how prompts bestow such advantages in continual learning.
We provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts, thereby inspiring the design of a novel gating mechanism.
The effectiveness of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and pretraining paradigms.
arXiv Detail & Related papers (2024-05-23T02:49:57Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP.
Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance.
We break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them.
arXiv Detail & Related papers (2021-10-08T20:22:26Z) - ReMP: Rectified Metric Propagation for Few-Shot Learning [67.96021109377809]
A rectified metric space is learned to maintain the metric consistency from training to testing.
Numerous analyses indicate that a simple modification of the objective can yield substantial performance gains.
The proposed ReMP is effective and efficient, and outperforms the state of the arts on various standard few-shot learning datasets.
arXiv Detail & Related papers (2020-12-02T00:07:53Z) - Rethinking the Hyperparameters for Fine-tuning [78.15505286781293]
Fine-tuning from pre-trained ImageNet models has become the de-facto standard for various computer vision tasks.
Current practices for fine-tuning typically involve selecting an ad-hoc choice of hyper parameters.
This paper re-examines several common practices of setting hyper parameters for fine-tuning.
arXiv Detail & Related papers (2020-02-19T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.