論文の概要: AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
- arxiv url: http://arxiv.org/abs/2410.02355v2
- Date: Mon, 21 Oct 2024 04:32:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 03:40:32.226341
- Title: AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
- Title(参考訳): AlphaEdit: 言語モデルのためのNull-Space Constrained Knowledge Editing
- Authors: Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, Tat-seng Chua,
- Abstract要約: 大型言語モデル(LLM)は、しばしば誤った知識や時代遅れの知識による幻覚を示す。
パラメータに適用する前に、保存された知識のnull空間に摂動を投影する新しいソリューションであるAlphaEditを紹介する。
我々は,この予測が保存知識を問うと,後編集後のLLMの出力が変化しないことを理論的に証明する。
- 参考スコア(独自算出の注目度): 65.93240009586351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
- Abstract(参考訳): 大型言語モデル(LLM)は、しばしば誤った知識や時代遅れの知識による幻覚を示す。
そのため、ターゲットとする知識更新を可能にするモデル編集手法が登場した。
これを実現するために、最も一般的なパラダイムは、まず影響力のあるパラメータを見つけ出し、摂動を導入してそれらを編集する、ロケーション・then-editingアプローチである。
効果はあるものの、最近の研究では、特に逐次的な編集シナリオにおいて、この摂動がLLM内の元々保存されていた知識を必然的に破壊することを示した。
これを解決するために、AlphaEditは、パラメータにそれを適用する前に、保存された知識のnull空間に摂動を投影する新しいソリューションである。
理論的には、この予測により保存された知識について問い合わせた際、後編集LSMの出力が変化し続けることが保証され、破壊の問題を軽減できる。
LLaMA3、GPT2-XL、GPT-Jを含む様々なLLMの広範な実験により、AlphaEditは投影用の追加コード1行で平均36.4%の速度で、ほとんどの位置対応編集手法の性能を向上することを示した。
私たちのコードは、https://github.com/jianghoucheng/AlphaEditで利用可能です。
関連論文リスト
- Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクの進行において重要な要素である。
既存の編集方法は、編集に関連する知識の変化を追跡し、組み込むのに苦労する。
知識グラフを利用した新しいモデル編集手法を提案し,LLM編集の強化,すなわちGLAMEを提案する。
論文 参考訳(メタデータ) (2024-02-21T07:52:26Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
本稿では,大規模言語モデルに新たな知識を入力問題に適用する学習 to LTE(Learning to Edit)フレームワークを提案する。
LTEには2段階のプロセスがある: (i) アライメントフェーズ(アライメントフェーズ)。
LTEの知識編集性能の優位性、バッチおよびシーケンシャルな編集の堅牢性、一般的なタスクに対する最小限の干渉、高速な編集速度を示す。
論文 参考訳(メタデータ) (2024-02-19T07:45:17Z) - Knowledge Editing on Black-box Large Language Models [37.17131278142237]
知識編集は、大きな言語モデル(LLM)の振る舞いを効率的に正確に修正し、特定の知識を更新することを目的としている。
現在の研究は、主にホワイトボックスのLLM編集に焦点を当てており、重要なシナリオであるブラックボックスのLLM編集を見下ろしている。
ブラックボックスLLMにKEを導入し,既存の評価の限界を克服するための総合評価フレームワークを提案する。
2つのベンチマークの実験と分析は、 PostEditがすべてのベースラインを上回り、強力な一般化を実現することを示した。
論文 参考訳(メタデータ) (2024-02-13T17:59:34Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
知識編集が大規模言語モデル(LLM)の知識を更新
既存の作業はこの特性を無視し、編集には一般化が欠けている。
実験により、異なる文脈がLLMに与える影響は、同じ知識を思い出す際にガウス的な分布に従うことが判明した。
論文 参考訳(メタデータ) (2024-01-15T09:09:14Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
知識編集が潜在的なリスクをもたらす副作用をもたらすかどうかはまだ不明である。
本稿では,大規模言語モデルの知識編集に伴う潜在的な落とし穴について検討する。
実験結果は、知識編集が意図しない結果の影を必然的に落としてしまうことを鮮明に示している。
論文 参考訳(メタデータ) (2023-10-03T15:10:46Z) - Cross-Lingual Knowledge Editing in Large Language Models [73.12622532088564]
知識編集は、スクラッチから再学習することなく、大きな言語モデルを新しい知識に適応させることが示されている。
ソース言語編集が別のターゲット言語に与える影響は、いまだ不明である。
まず、ZsREを英語から中国語に翻訳することで、大規模な言語間合成データセットを収集する。
論文 参考訳(メタデータ) (2023-09-16T11:07:52Z) - EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models [45.70959260613425]
本稿では,大規模言語モデルのための知識編集フレームワークであるEasyEditを提案する。
様々な最先端の知識編集アプローチをサポートし、よく知られたLLMにも容易に適用できる。
我々はLlaMA-2の知識編集結果をEasyEditで報告し、知識編集が従来の微調整よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-08-14T16:52:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。