AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
- URL: http://arxiv.org/abs/2410.02355v2
- Date: Mon, 21 Oct 2024 04:32:56 GMT
- Title: AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
- Authors: Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, Tat-seng Chua,
- Abstract summary: Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge.
We introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters.
We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge.
- Score: 65.93240009586351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
Related papers
- Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
This paper pioneers the investigation of editing conceptual knowledge for Large Language Models (LLMs)
We construct a novel benchmark dataset ConceptEdit and establish a suite of new metrics for evaluation.
experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge.
arXiv Detail & Related papers (2024-03-10T16:57:10Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks.
Existing editing methods struggle to track and incorporate changes in knowledge associated with edits.
We propose a novel model editing method that leverages knowledge graphs for enhancing LLM editing, namely GLAME.
arXiv Detail & Related papers (2024-02-21T07:52:26Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
We propose a Learning to Edit (LTE) framework, focusing on teaching large language models to apply updated knowledge into input questions.
LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits.
We demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds.
arXiv Detail & Related papers (2024-02-19T07:45:17Z) - Knowledge Editing on Black-box Large Language Models [37.17131278142237]
Knowledge editing aims to efficiently and precisely modify the behavior of large language models (LLMs) to update specific knowledge.
Current research primarily focuses on white-box LLMs editing, overlooking an important scenario: black-box LLMs editing.
We introduce KE on black-box LLMs and then propose a comprehensive evaluation framework to overcome the limitations of existing evaluations.
Experiments and analysis on two benchmarks demonstrate that postEdit outperforms all baselines and achieves strong generalization.
arXiv Detail & Related papers (2024-02-13T17:59:34Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
Knowledge-editing updates knowledge of large language models (LLMs)
Existing works ignore this property and the editing lacks generalization.
We empirically find that the effects of different contexts upon LLMs in recalling the same knowledge follow a Gaussian-like distribution.
arXiv Detail & Related papers (2024-01-15T09:09:14Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
It is still unclear whether knowledge editing might introduce side effects that pose potential risks or not.
This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for Large Language Models.
Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences.
arXiv Detail & Related papers (2023-10-03T15:10:46Z) - Cross-Lingual Knowledge Editing in Large Language Models [73.12622532088564]
Knowledge editing has been shown to adapt large language models to new knowledge without retraining from scratch.
It is still unknown the effect of source language editing on a different target language.
We first collect a large-scale cross-lingual synthetic dataset by translating ZsRE from English to Chinese.
arXiv Detail & Related papers (2023-09-16T11:07:52Z) - EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models [45.70959260613425]
We propose EasyEdit, an easy-to-use knowledge editing framework for Large Language Models.
It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs.
We report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning.
arXiv Detail & Related papers (2023-08-14T16:52:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.