論文の概要: Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis
- arxiv url: http://arxiv.org/abs/2410.02453v1
- Date: Thu, 3 Oct 2024 13:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 03:11:05.540163
- Title: Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis
- Title(参考訳): ユーザコヒーレンスを定量化する - クロスドメインレコメンデーション分析のための統一フレームワーク
- Authors: Michaël Soumm, Alexandre Fournier-Montgieux, Adrian Popescu, Bertrand Delezoide,
- Abstract要約: 本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
- 参考スコア(独自算出の注目度): 69.37718774071793
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The effectiveness of Recommender Systems (RS) is closely tied to the quality and distinctiveness of user profiles, yet despite many advancements in raw performance, the sensitivity of RS to user profile quality remains under-researched. This paper introduces novel information-theoretic measures for understanding recommender systems: a "surprise" measure quantifying users' deviations from popular choices, and a "conditional surprise" measure capturing user interaction coherence. We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics. Using a rigorous statistical framework, our analysis quantifies how much user profile density and information measures impact algorithm performance across domains. By segmenting users based on these measures, we achieve improved performance with reduced data and show that simpler algorithms can match complex ones for low-coherence users. Additionally, we employ our measures to analyze how well different recommendation algorithms maintain the coherence and diversity of user preferences in their predictions, providing insights into algorithm behavior. This work advances the theoretical understanding of user behavior and practical heuristics for personalized recommendation systems, promoting more efficient and adaptive architectures.
- Abstract(参考訳): Recommender Systems (RS) の有効性は, ユーザプロファイルの品質と特徴性に密接に関連している。
本稿では,リコメンデータシステムを理解するための新しい情報理論的尺度について紹介する。ユーザ選択の偏差を定量化する「サプライズ」尺度と,ユーザインタラクションのコヒーレンスを捉える「条件的サプライズ」尺度である。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
厳密な統計フレームワークを用いて、ユーザプロファイル密度と情報測定がドメイン間のアルゴリズム性能に与える影響を定量化する。
これらの測定値に基づいてユーザをセグメント化することにより、データ削減によるパフォーマンスの向上を実現し、より単純なアルゴリズムが、低コヒーレンスユーザにとって複雑なものと一致することを示す。
さらに,提案手法を用いて,予測におけるユーザの嗜好の一貫性と多様性を良好に維持し,アルゴリズムの挙動に関する洞察を提供する。
この研究は、パーソナライズされたレコメンデーションシステムのためのユーザ行動と実践的ヒューリスティックの理論的理解を促進し、より効率的で適応的なアーキテクチャを促進する。
関連論文リスト
- Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
本稿では,長期シナリオにおけるユーザ-リコメンダ間のインタラクションを模倣するシミュレーションフレームワークを提案する。
本稿では,ユーザの嗜好に対するアルゴリズムの影響を定量化する2つの新しい指標について紹介する。
論文 参考訳(メタデータ) (2024-09-24T21:54:22Z) - FedDMF: Privacy-Preserving User Attribute Prediction using Deep Matrix
Factorization [1.9181612035055007]
本稿では,ユーザマッチングを必要とせず,ユーザの属性を予測する新しいアルゴリズムを提案する。
我々のアプローチは、異なるクライアント上で深い行列分解モデルを訓練し、属性項目ベクトルのみを共有することである。
これにより、ユーザベクトル自体を共有することなく、ユーザ属性を予測できます。
論文 参考訳(メタデータ) (2023-12-24T06:49:00Z) - Understanding or Manipulation: Rethinking Online Performance Gains of
Modern Recommender Systems [38.75457258877731]
本稿では,推薦アルゴリズムの操作度をベンチマークするフレームワークを提案する。
オンラインクリックスルー率が高いことは、必ずしもユーザーの初期嗜好をよりよく理解するという意味ではない。
我々は,制約付きユーザ嗜好操作による最適化問題として,将来のレコメンデーションアルゴリズムの研究を取り扱うべきであることを主張する。
論文 参考訳(メタデータ) (2022-10-11T17:56:55Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Detecting and Quantifying Malicious Activity with Simulation-based
Inference [61.9008166652035]
本稿では,レコメンデーションアルゴリズムと相互作用する正規および悪意のあるユーザのモデルを用いて,悪意のあるユーザ識別実験を行う。
本稿では,ユーザやグループの影響を定量化するためのシミュレーションに基づく新しい尺度を提案する。
論文 参考訳(メタデータ) (2021-10-06T03:39:24Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Quantifying Availability and Discovery in Recommender Systems via
Stochastic Reachability [27.21058243752746]
そこで本稿では,ユーザへのコンテンツ推薦の最大確率を定量化するために,到達性に基づく評価手法を提案する。
リーチビリティは、コンテンツの可用性のバイアスを検出し、ユーザに与えられる発見の機会の制限を診断するために使用することができる。
明示的および暗黙的な評価の大規模なデータセットに基づいてトレーニングされた推薦アルゴリズムの評価を示す。
論文 参考訳(メタデータ) (2021-06-30T16:18:12Z) - Control Variates for Slate Off-Policy Evaluation [112.35528337130118]
多次元動作を伴うバッチ化されたコンテキスト帯域データから政治外評価の問題について検討する。
我々は, PIと自己正規化PIの双方に対して, リスク改善を保証した新しい推定器を得る。
論文 参考訳(メタデータ) (2021-06-15T06:59:53Z) - A Soft Recommender System for Social Networks [1.8275108630751844]
最近のソーシャルレコメンデーションシステムは、正確なレコメンデーションを行うために友情グラフの恩恵を受けている。
われわれはさらに一歩進んで、もっとリアルなリコメンデーションをする真の友達を特定した。
ユーザ間の類似度と,ユーザとアイテム間の依存関係を計算した。
論文 参考訳(メタデータ) (2020-01-08T13:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。