Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis
- URL: http://arxiv.org/abs/2410.02453v1
- Date: Thu, 3 Oct 2024 13:02:07 GMT
- Title: Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis
- Authors: Michaƫl Soumm, Alexandre Fournier-Montgieux, Adrian Popescu, Bertrand Delezoide,
- Abstract summary: This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
- Score: 69.37718774071793
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The effectiveness of Recommender Systems (RS) is closely tied to the quality and distinctiveness of user profiles, yet despite many advancements in raw performance, the sensitivity of RS to user profile quality remains under-researched. This paper introduces novel information-theoretic measures for understanding recommender systems: a "surprise" measure quantifying users' deviations from popular choices, and a "conditional surprise" measure capturing user interaction coherence. We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics. Using a rigorous statistical framework, our analysis quantifies how much user profile density and information measures impact algorithm performance across domains. By segmenting users based on these measures, we achieve improved performance with reduced data and show that simpler algorithms can match complex ones for low-coherence users. Additionally, we employ our measures to analyze how well different recommendation algorithms maintain the coherence and diversity of user preferences in their predictions, providing insights into algorithm behavior. This work advances the theoretical understanding of user behavior and practical heuristics for personalized recommendation systems, promoting more efficient and adaptive architectures.
Related papers
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Online Clustering of Dueling Bandits [59.09590979404303]
We introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback.
We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions.
arXiv Detail & Related papers (2025-02-04T07:55:41Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - FedDMF: Privacy-Preserving User Attribute Prediction using Deep Matrix
Factorization [1.9181612035055007]
We propose a novel algorithm for predicting user attributes without requiring user matching.
Our approach involves training deep matrix factorization models on different clients and sharing only attribute item vectors.
This allows us to predict user attributes without sharing the user vectors themselves.
arXiv Detail & Related papers (2023-12-24T06:49:00Z) - Understanding or Manipulation: Rethinking Online Performance Gains of
Modern Recommender Systems [38.75457258877731]
We present a framework for benchmarking the degree of manipulations of recommendation algorithms.
We find that a high online click-through rate does not necessarily mean a better understanding of user initial preference.
We advocate that future recommendation algorithm studies should be treated as an optimization problem with constrained user preference manipulations.
arXiv Detail & Related papers (2022-10-11T17:56:55Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Detecting and Quantifying Malicious Activity with Simulation-based
Inference [61.9008166652035]
We show experiments in malicious user identification using a model of regular and malicious users interacting with a recommendation algorithm.
We provide a novel simulation-based measure for quantifying the effects of a user or group of users on its dynamics.
arXiv Detail & Related papers (2021-10-06T03:39:24Z) - Quantifying Availability and Discovery in Recommender Systems via
Stochastic Reachability [27.21058243752746]
We propose an evaluation procedure based on reachability to quantify the maximum probability of recommending a target piece of content to a user.
reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users.
We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings.
arXiv Detail & Related papers (2021-06-30T16:18:12Z) - A Soft Recommender System for Social Networks [1.8275108630751844]
Recent social recommender systems benefit from friendship graph to make an accurate recommendation.
We went a step further to identify true friends for making even more realistic recommendations.
We calculated the similarity between users, as well as the dependency between a user and an item.
arXiv Detail & Related papers (2020-01-08T13:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.