Encryption-Friendly LLM Architecture
- URL: http://arxiv.org/abs/2410.02486v1
- Date: Thu, 3 Oct 2024 13:48:35 GMT
- Title: Encryption-Friendly LLM Architecture
- Authors: Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo Kim, Hyunsik Chae, Jung Hee Cheon, Ernest K. Ryu,
- Abstract summary: Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states.
We propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning.
- Score: 11.386436468650016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) offer personalized responses based on user interactions, but this use case raises serious privacy concerns. Homomorphic encryption (HE) is a cryptographic protocol supporting arithmetic computations in encrypted states and provides a potential solution for privacy-preserving machine learning (PPML). However, the computational intensity of transformers poses challenges for applying HE to LLMs. In this work, we propose a modified HE-friendly transformer architecture with an emphasis on inference following personalized (private) fine-tuning. Utilizing LoRA fine-tuning and Gaussian kernels, we achieve significant computational speedups -- 6.94x for fine-tuning and 2.3x for inference -- while maintaining performance comparable to plaintext models. Our findings provide a viable proof of concept for offering privacy-preserving LLM services in areas where data protection is crucial.
Related papers
- Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
Privacy-Preserving Machine Learning (PPML) methods have been introduced to safeguard the privacy and security of Machine Learning models.
Modern cryptographic scheme, Hybrid Homomorphic Encryption (HHE) has recently emerged.
We develop and evaluate an HHE-based PPML application for classifying heart disease based on sensitive ECG data.
arXiv Detail & Related papers (2024-01-26T13:12:52Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - When approximate design for fast homomorphic computation provides
differential privacy guarantees [0.08399688944263842]
Differential privacy (DP) and cryptographic primitives are popular countermeasures against privacy attacks.
In this paper, we design SHIELD, a probabilistic approximation algorithm for the argmax operator.
Even if SHIELD could have other applications, we here focus on one setting and seamlessly integrate it in the SPEED collaborative training framework.
arXiv Detail & Related papers (2023-04-06T09:38:01Z) - HE-MAN -- Homomorphically Encrypted MAchine learning with oNnx models [0.23624125155742057]
homomorphic encryption (FHE) is a promising technique to enable individuals using ML services without giving up privacy.
We introduce HE-MAN, an open-source machine learning toolset for privacy preserving inference with ONNX models and homomorphically encrypted data.
Compared to prior work, HE-MAN supports a broad range of ML models in ONNX format out of the box without sacrificing accuracy.
arXiv Detail & Related papers (2023-02-16T12:37:14Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.