論文の概要: Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments
- arxiv url: http://arxiv.org/abs/2410.02516v1
- Date: Thu, 3 Oct 2024 14:25:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:51:33.645175
- Title: Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments
- Title(参考訳): 多エージェント環境における独立RLエージェント間の相互作用パターンの学習
- Authors: Vasanth Reddy Baddam, Suat Gumussoy, Almuatazbellah Boker, Hoda Eldardiry,
- Abstract要約: ボトムアップネットワーク(BUN)は、マルチエージェントの集合を統一エンティティとして扱う。
協調ナビゲーションやトラヒックコントロールなどのタスクを含む,さまざまな協調型マルチエージェントシナリオに対する実証的な評価は,BUNが計算コストを大幅に削減したベースライン手法よりも優れていることを一貫して証明している。
- 参考スコア(独自算出の注目度): 3.0284592792243794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world problems, such as controlling swarms of drones and urban traffic, naturally lend themselves to modeling as multi-agent reinforcement learning (RL) problems. However, existing multi-agent RL methods often suffer from scalability challenges, primarily due to the introduction of communication among agents. Consequently, a key challenge lies in adapting the success of deep learning in single-agent RL to the multi-agent setting. In response to this challenge, we propose an approach that fundamentally reimagines multi-agent environments. Unlike conventional methods that model each agent individually with separate networks, our approach, the Bottom Up Network (BUN), adopts a unique perspective. BUN treats the collective of multi-agents as a unified entity while employing a specialized weight initialization strategy that promotes independent learning. Furthermore, we dynamically establish connections among agents using gradient information, enabling coordination when necessary while maintaining these connections as limited and sparse to effectively manage the computational budget. Our extensive empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
- Abstract(参考訳): ドローンの群れや都市交通の制御など、現実世界の多くの問題は、自然にマルチエージェント強化学習(RL)問題としてモデリングに役立っている。
しかし、既存のマルチエージェントRL法は、主にエージェント間の通信の導入によってスケーラビリティの問題に悩まされることが多い。
したがって、シングルエージェントRLにおけるディープラーニングの成功をマルチエージェント設定に適応させることが重要な課題である。
この課題に対して,我々は,マルチエージェント環境を根本的に再構築するアプローチを提案する。
エージェントを個別に個別にモデル化する従来の手法とは異なり、我々のアプローチであるボトムアップネットワーク(BUN)はユニークな視点を採用している。
BUNは、独立した学習を促進する専門的なウェイト初期化戦略を採用しながら、マルチエージェントの集合を統一的な実体として扱う。
さらに、勾配情報を用いてエージェント間の接続を動的に確立し、これらの接続を限定的かつスパースに維持しながら、必要な調整を可能にし、計算予算を効果的に管理する。
協調ナビゲーションやトラヒックコントロールなどのタスクを含む,さまざまな協調型マルチエージェントシナリオに対する広範な実証評価は,BUNが計算コストを大幅に削減したベースライン手法よりも優れていることを一貫して証明している。
関連論文リスト
- Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
マルチエージェント強化学習をスケールする上で重要な障害の1つは、個々のエージェントの行動にクレジットを割り当てることである。
本稿では,このクレジット代入問題に対して,PRD(textitpartial reward decoupling)と呼ぶアプローチで対処する。
PRDは、大規模な協調的マルチエージェントRL問題を、エージェントのサブセットを含む分離されたサブプロブレムに分解し、クレジット割り当てを単純化する。
論文 参考訳(メタデータ) (2021-12-23T17:48:04Z) - Relative Distributed Formation and Obstacle Avoidance with Multi-agent
Reinforcement Learning [20.401609420707867]
マルチエージェント強化学習(MARL)に基づく分散生成・障害物回避手法を提案する。
提案手法は, 障害物回避における生成誤差, 生成収束率, オンパー成功率に関して, ベースラインと比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-11-14T13:02:45Z) - Learning Efficient Multi-Agent Cooperative Visual Exploration [18.42493808094464]
複数のエージェントによる視覚的屋内探索の課題を考察し、エージェントはできるだけ少ないステップで屋内全領域を探索する必要がある。
我々は、最先端の単一エージェントRLソリューションであるActive Neural SLAM(ANS)を、新しいRLベースのグローバルゴールプランナーであるSpatial Coordination Planner(SCP)を導入してマルチエージェント設定に拡張する。
SCPは、各エージェントの空間情報をエンドツーエンドに活用し、探索効率の高い異なる空間目標に向けて効果的にエージェントを誘導する。
論文 参考訳(メタデータ) (2021-10-12T04:48:10Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。