論文の概要: Personalized Quantum Federated Learning for Privacy Image Classification
- arxiv url: http://arxiv.org/abs/2410.02547v1
- Date: Thu, 3 Oct 2024 14:53:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:31:52.782652
- Title: Personalized Quantum Federated Learning for Privacy Image Classification
- Title(参考訳): プライバシ画像分類のためのパーソナライズされた量子フェデレーション学習
- Authors: Jinjing Shi, Tian Chen, Shichao Zhang, Xuelong Li,
- Abstract要約: 画像の不均衡な分布の場合のクライアントモデルの性格を高めるために、パーソナライズされた量子フェデレーション学習アルゴリズムを提案する。
実験結果から,パーソナライズされた量子フェデレーション学習アルゴリズムは,高性能なグローバルモデルとローカルモデルを得ることができることが示された。
- 参考スコア(独自算出の注目度): 52.04404538764307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum federated learning has brought about the improvement of privacy image classification, while the lack of personality of the client model may contribute to the suboptimal of quantum federated learning. A personalized quantum federated learning algorithm for privacy image classification is proposed to enhance the personality of the client model in the case of an imbalanced distribution of images. First, a personalized quantum federated learning model is constructed, in which a personalized layer is set for the client model to maintain the personalized parameters. Second, a personalized quantum federated learning algorithm is introduced to secure the information exchanged between the client and server.Third, the personalized federated learning is applied to image classification on the FashionMNIST dataset, and the experimental results indicate that the personalized quantum federated learning algorithm can obtain global and local models with excellent performance, even in situations where local training samples are imbalanced. The server's accuracy is 100% with 8 clients and a distribution parameter of 100, outperforming the non-personalized model by 7%. The average client accuracy is 2.9% higher than that of the non-personalized model with 2 clients and a distribution parameter of 1. Compared to previous quantum federated learning algorithms, the proposed personalized quantum federated learning algorithm eliminates the need for additional local training while safeguarding both model and data privacy.It may facilitate broader adoption and application of quantum technologies, and pave the way for more secure, scalable, and efficient quantum distribute machine learning solutions.
- Abstract(参考訳): 量子フェデレーション学習は、プライバシ画像分類の改善をもたらし、クライアントモデルの個性の欠如は、量子フェデレーション学習の亜最適化に寄与する可能性がある。
プライバシ画像分類のためのパーソナライズされた量子フェデレーション学習アルゴリズムを提案する。
まず、パーソナライズされた量子フェデレーション学習モデルを構築し、パーソナライズされたパラメータを維持するために、クライアントモデルにパーソナライズされたレイヤを設定する。
第2に、クライアントとサーバ間で交換された情報を保護するために、パーソナライズされた量子フェデレーション学習アルゴリズムを導入し、FashionMNISTデータセット上の画像分類にパーソナライズされたフェデレーション学習を適用し、その実験結果から、ローカルトレーニングサンプルが不均衡な状況であっても、パーソナライズされた量子フェデレーション学習アルゴリズムが、優れた性能でグローバルおよびローカルモデルを得ることができることを示す。
サーバの精度は8つのクライアントと100の分散パラメータで100%であり、非個人化モデルよりも7%高い。
平均クライアント精度は2つのクライアントを持つ非個人化モデルよりも2.9%高く、分布パラメータは1。
従来の量子フェデレーション学習アルゴリズムと比較して、提案されたパーソナライズされた量子フェデレーション学習アルゴリズムは、モデルとデータプライバシの両方を保護しながら、追加のローカルトレーニングの必要性を排除し、量子技術の広範な採用と適用を促進し、よりセキュアでスケーラブルで効率的な量子分散機械学習ソリューションの道を開く可能性がある。
関連論文リスト
- FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$は、アルゴリズムに基づくパーソナライズされたフェデレーション学習フレームワークである。
我々は、textitLearn2pFed$が、従来のパーソナライズされたフェデレーション学習方法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-01-16T12:45:15Z) - PeFLL: Personalized Federated Learning by Learning to Learn [16.161876130822396]
PeFLLは,3つの側面で最先端の学習を改善する,個人化された新しいフェデレーション学習アルゴリズムである。
PeFLLの中核には、埋め込みネットワークとハイパーネットワークを共同でトレーニングする学習から学習へのアプローチがある。
論文 参考訳(メタデータ) (2023-06-08T19:12:42Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
我々は、フェデレーション分類器平均化(FedClassAvg)と呼ばれる、新しいパーソナライズされたフェデレーション学習手法を提案する。
FedClassAvgは、特徴空間上の決定境界に関する合意として重みを集約する。
異質なパーソナライズされたフェデレーション学習タスクにおいて、現在の最先端のアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-25T08:32:08Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Self-Aware Personalized Federated Learning [32.97492968378679]
本研究では,ベイズ階層モデルにインスパイアされた自己認識型パーソナライズド・フェデレーション・ラーニング(FL)手法を開発した。
本手法では,従来の局所微調整法とサンプルサイズに基づくアグリゲーションの代わりに,不確実性駆動型局所トレーニングステップとアグリゲーションルールを用いる。
合成データ、Amazon Alexa音声データ、MNIST、FEMNIST、CIFAR10、Sent140などの公開データセットに関する実験的研究により、提案手法はパーソナライズ性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-17T19:02:25Z) - QuPeD: Quantized Personalization via Distillation with Applications to
Federated Learning [8.420943739336067]
統合学習(FL)は、複数のクライアントとサーバを協調的に使用しながら、単一のグローバルモデルをトレーニングすることを目的としている。
本稿では,集合的(個人化されたモデル圧縮)訓練を容易にする,テキスト化およびテキスト化FLアルゴリズムQuPeDを提案する。
数値的には、QuPeDは、さまざまな異種環境におけるクライアントの個人化FLメソッド、FedAvg、およびローカルトレーニングよりも優れていた。
論文 参考訳(メタデータ) (2021-07-29T10:55:45Z) - QuPeL: Quantized Personalization with Applications to Federated Learning [8.420943739336067]
本稿では,ヘテロジニアスクライアントとの協調学習を容易にするテキスト化・テキスト化flアルゴリズムを提案する。
パーソナライゼーションのために、クライアントはリソースに応じて異なる量子化パラメータを持つテキスト圧縮パーソナライゼーションモデルを学ぶことができます。
数値的に、量子化レベルを最適化することで性能が向上し、QuPeLがFedAvgとクライアントのローカルトレーニングの両方で不均一な環境で性能を向上することを示す。
論文 参考訳(メタデータ) (2021-02-23T16:43:51Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。