An Improved Variational Method for Image Denoising
- URL: http://arxiv.org/abs/2410.02587v1
- Date: Thu, 3 Oct 2024 15:29:43 GMT
- Title: An Improved Variational Method for Image Denoising
- Authors: Jing-En Huang, Jia-Wei Liao, Ku-Te Lin, Yu-Ju Tsai, Mei-Heng Yueh,
- Abstract summary: The total variation (TV) method is an image denoising technique that aims to reduce noise by minimizing the total variation of the image.
We propose an improved TV model for image denoising and the associated numerical algorithm to carry out the procedure.
- Score: 0.6466206145151128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The total variation (TV) method is an image denoising technique that aims to reduce noise by minimizing the total variation of the image, which measures the variation in pixel intensities. The TV method has been widely applied in image processing and computer vision for its ability to preserve edges and enhance image quality. In this paper, we propose an improved TV model for image denoising and the associated numerical algorithm to carry out the procedure, which is particularly effective in removing several types of noises and their combinations. Our improved model admits a unique solution and the associated numerical algorithm guarantees the convergence. Numerical experiments are demonstrated to show improved effectiveness and denoising quality compared to other TV models. Such encouraging results further enhance the utility of the TV method in image processing.
Related papers
- ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
We present a novel strategy called the Diffusion Model for Image Denoising (DMID)
Our strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model.
Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics.
arXiv Detail & Related papers (2023-07-08T14:59:41Z) - Weighted structure tensor total variation for image denoising [0.5120567378386615]
For image denoising problems, the structure tensor total variation (STV)-based models show good performances when compared with other competing regularization approaches.
We employ the anisotropic weighted matrix introduced in the anisotropic total variation (ATV) model to improve the STV model.
Our proposed weighted STV model can effectively capture local information from images and maintain their details during the denoising process.
arXiv Detail & Related papers (2023-06-18T05:37:38Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Cross-boosting of WNNM Image Denoising method by Directional Wavelet
Packets [2.7648976108201815]
The paper presents an image denoising scheme by combining a method that is based on directional quasi-analytic wavelet packets (qWPs) with the state-of-the-art Weighted Nuclear Norm Minimization (WNNM) denoising algorithm.
The proposed methodology couples the qWPdn capabilities to capture edges and fine texture patterns even in the severely corrupted images.
arXiv Detail & Related papers (2022-06-09T11:37:46Z) - A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body
Theory [40.29747436872773]
This paper presents a novel image denoising algorithm inspired by the quantum many-body theory.
Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics.
We show the ability of our approach to deal with practical images denoising problems such as medical ultrasound image despeckling applications.
arXiv Detail & Related papers (2021-12-16T23:34:37Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Image Denoising Using the Geodesics' Gramian of the Manifold Underlying Patch-Space [1.7767466724342067]
We propose a novel and computationally efficient image denoising method that is capable of producing accurate images.
To preserve image smoothness, this method inputs patches partitioned from the image rather than pixels.
We validate the performance of this method against benchmark image processing methods.
arXiv Detail & Related papers (2020-10-14T04:07:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.