EXGRA-MED: Extended Context Graph Alignment for Medical Vision- Language Models
- URL: http://arxiv.org/abs/2410.02615v3
- Date: Tue, 17 Jun 2025 22:50:07 GMT
- Title: EXGRA-MED: Extended Context Graph Alignment for Medical Vision- Language Models
- Authors: Duy M. H. Nguyen, Nghiem T. Diep, Trung Q. Nguyen, Hoang-Bao Le, Tai Nguyen, Tien Nguyen, TrungTin Nguyen, Nhat Ho, Pengtao Xie, Roger Wattenhofer, James Zou, Daniel Sonntag, Mathias Niepert,
- Abstract summary: We introduce EXGRA-MED, a novel framework for vision-language integration in medical AI.<n>It jointly aligns images, instruction responses, and extended captions in the latent space, advancing semantic grounding and cross-modal coherence.<n>It matches LLAVA-MED's performance using just 10% of pre-training data, achieving a 20.13% gain on VQA-RAD and approaching full-data performance.
- Score: 69.40730368630003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art medical multi-modal LLMs (med-MLLMs), such as LLAVA-MED and BIOMEDGPT, primarily depend on scaling model size and data volume, with training driven largely by autoregressive objectives. However, we reveal that this approach can lead to weak vision-language alignment, making these models overly dependent on costly instruction-following data. To address this, we introduce EXGRA-MED, a novel multi-graph alignment framework that jointly aligns images, instruction responses, and extended captions in the latent space, advancing semantic grounding and cross-modal coherence. To scale to large LLMs (e.g., LLaMa-7B), we develop an efficient end-to-end training scheme using black-box gradient estimation, enabling fast and scalable optimization. Empirically, EXGRA-MED matches LLAVA-MED's performance using just 10% of pre-training data, achieving a 20.13% gain on VQA-RAD and approaching full-data performance. It also outperforms strong baselines like BIOMEDGPT and RADFM on visual chatbot and zero-shot classification tasks, demonstrating its promise for efficient, high-quality vision-language integration in medical AI.
Related papers
- HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models [15.877790469608662]
We introduce an LVLM-driven data refinement pipeline to enhance the quality of image-text pair data.<n>We propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags.<n>Our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks.
arXiv Detail & Related papers (2025-07-30T07:21:36Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.<n>By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.<n> Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification [19.29480118378639]
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels.
This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification.
arXiv Detail & Related papers (2025-02-11T09:42:13Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.<n>EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
We introduce a robust and versatile framework that combines AI and crowdsourcing to improve the quality and quantity of medical image datasets.<n>Our approach utilise a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently.<n>We employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features.
arXiv Detail & Related papers (2024-09-04T21:22:54Z) - CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare [12.218718086529462]
This study focuses on the Comprehensive Medical Benchmark in Chinese (CMB)
We successfully trained a smaller base model to achieve scores comparable to larger models.
By integrating a wide range of instructional content, our approach addresses potential issues such as data quality inconsistencies.
arXiv Detail & Related papers (2024-07-29T05:00:48Z) - Concept-skill Transferability-based Data Selection for Large Vision-Language Models [56.0725292404808]
We introduce COINCIDE, an effective and scalable data selection technique for training vision-language models.
We cluster the training data using internal activations from a small model, which identifies concept-skill compositions needed by a target LVLM.
Experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines.
arXiv Detail & Related papers (2024-06-16T16:15:20Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Fusion of Domain-Adapted Vision and Language Models for Medical Visual Question Answering [4.283761158899643]
We propose a medical vision-language model that integrates large vision and language models adapted for the medical domain.
The proposed model achieves state-of-the-art performance on the SLAKE 1.0 medical VQA dataset with an overall accuracy of 87.5%.
arXiv Detail & Related papers (2024-04-24T20:31:15Z) - M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models
and Latent Space Geometry Optimization [10.099650491353026]
We propose a novel way for pre-training and regularising medical vision-language models.
The proposed method, named Medical vision-language pre-training with Frozen language models and Latent spAce Geometry optimization (M-FLAG), leverages a frozen language model for training stability and efficiency.
Extensive experiments across five public datasets demonstrate that M-FLAG significantly outperforms existing medical vision-language pre-training approaches.
arXiv Detail & Related papers (2023-07-17T09:38:41Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
We present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text.
The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets.
arXiv Detail & Related papers (2023-07-11T15:00:11Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.