論文の概要: Achieving Fairness in Predictive Process Analytics via Adversarial Learning
- arxiv url: http://arxiv.org/abs/2410.02618v1
- Date: Thu, 3 Oct 2024 15:56:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:02:21.186760
- Title: Achieving Fairness in Predictive Process Analytics via Adversarial Learning
- Title(参考訳): 逆学習による予測プロセス分析の公正性獲得
- Authors: Massimiliano de Leoni, Alessandro Padella,
- Abstract要約: 本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
- 参考スコア(独自算出の注目度): 50.31323204077591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive business process analytics has become important for organizations, offering real-time operational support for their processes. However, these algorithms often perform unfair predictions because they are based on biased variables (e.g., gender or nationality), namely variables embodying discrimination. This paper addresses the challenge of integrating a debiasing phase into predictive business process analytics to ensure that predictions are not influenced by biased variables. Our framework leverages on adversial debiasing is evaluated on four case studies, showing a significant reduction in the contribution of biased variables to the predicted value. The proposed technique is also compared with the state of the art in fairness in process mining, illustrating that our framework allows for a more enhanced level of fairness, while retaining a better prediction quality.
- Abstract(参考訳): 予測可能なビジネスプロセス分析は、組織にとって重要になってきており、プロセスのリアルタイムな運用サポートを提供しています。
しかしながら、これらのアルゴリズムは偏りのある変数(例えば、性別や国籍)、すなわち差別を具現化した変数に基づいているため、不公平な予測を行うことが多い。
本稿では,予測段階を予測的ビジネスプロセス分析に統合し,予測がバイアス変数の影響を受けないようにすることの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
提案手法は, プロセスマイニングにおける最先端のフェアネスと比較し, より優れた予測品質を維持しつつ, より高レベルのフェアネスを実現できることを示した。
関連論文リスト
- Microfoundation Inference for Strategic Prediction [26.277259491014163]
本稿では,人口に対する予測モデルの長期的影響をカプセル化した分布図の学習手法を提案する。
具体的には,エージェントの応答をコストユーティリティ問題としてモデル化し,そのコストを見積もる。
本稿では,この推定値の収束率と,クレジット・スコアリング・データセットの実証実験による品質評価について述べる。
論文 参考訳(メタデータ) (2024-11-13T19:37:49Z) - Deconfounding Time Series Forecasting [1.5967186772129907]
時系列予測は様々な領域において重要な課題であり、正確な予測は情報的な意思決定を促進する。
従来の予測手法は、しばしば将来の結果を予測するために変数の現在の観測に依存している。
本稿では,過去のデータから得られた潜在的共同設立者の表現を取り入れた予測手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T12:45:42Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Automatically Reconciling the Trade-off between Prediction Accuracy and
Earliness in Prescriptive Business Process Monitoring [0.802904964931021]
本稿では,予測精度と予測聴力のトレードオフを自動的に整合する問題に着目する。
予測精度と補聴器とのトレードオフを和らげるために、文献で異なるアプローチが提示された。
予測精度と補聴器のトレードオフを整合する主要な代替手法の比較評価を行う。
論文 参考訳(メタデータ) (2023-07-12T06:07:53Z) - Fairness and Explainability: Bridging the Gap Towards Fair Model
Explanations [12.248793742165278]
我々は、説明に基づく手続き指向公正の新たな視点を提示することにより、公正性と説明可能性のギャップを埋める。
本稿では,複数の目的を同時に達成する包括的公正性アルゴリズム (CFA) を提案する。
論文 参考訳(メタデータ) (2022-12-07T18:35:54Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。