Measuring and Improving Persuasiveness of Large Language Models
- URL: http://arxiv.org/abs/2410.02653v2
- Date: Sun, 6 Oct 2024 04:08:04 GMT
- Title: Measuring and Improving Persuasiveness of Large Language Models
- Authors: Somesh Singh, Yaman K Singla, Harini SI, Balaji Krishnamurthy,
- Abstract summary: We introduce PersuasionBench and PersuasionArena to measure the persuasiveness of generative models automatically.
Our findings carry key implications for both model developers and policymakers.
- Score: 12.134372070736596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs are increasingly being used in workflows involving generating content to be consumed by humans (e.g., marketing) and also in directly interacting with humans (e.g., through chatbots). The development of such systems that are capable of generating verifiably persuasive messages presents both opportunities and challenges for society. On the one hand, such systems could positively impact domains like advertising and social good, such as addressing drug addiction, and on the other, they could be misused for spreading misinformation and shaping political opinions. To channel LLMs' impact on society, we need to develop systems to measure and benchmark their persuasiveness. With this motivation, we introduce PersuasionBench and PersuasionArena, the first large-scale benchmark and arena containing a battery of tasks to measure the persuasion ability of generative models automatically. We investigate to what extent LLMs know and leverage linguistic patterns that can help them generate more persuasive language. Our findings indicate that the persuasiveness of LLMs correlates positively with model size, but smaller models can also be made to have a higher persuasiveness than much larger models. Notably, targeted training using synthetic and natural datasets significantly enhances smaller models' persuasive capabilities, challenging scale-dependent assumptions. Our findings carry key implications for both model developers and policymakers. For instance, while the EU AI Act and California's SB-1047 aim to regulate AI models based on the number of floating point operations, we demonstrate that simple metrics like this alone fail to capture the full scope of AI's societal impact. We invite the community to explore and contribute to PersuasionArena and PersuasionBench, available at https://bit.ly/measure-persuasion, to advance our understanding of AI-driven persuasion and its societal implications.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Persuasion Games using Large Language Models [0.0]
Large Language Models (LLMs) have emerged as formidable instruments capable of comprehending and producing human-like text.
This paper explores the potential of LLMs, to shape user perspectives and subsequently influence their decisions on particular tasks.
This capability finds applications in diverse domains such as Investment, Credit cards and Insurance.
arXiv Detail & Related papers (2024-08-28T15:50:41Z) - Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language [41.052284715017606]
We study the ability of Large Language Models (LLMs) to produce persuasive text.
As opposed to prior work which focuses on particular domains or types of persuasion, we conduct a general study across various domains.
We construct the new dataset Persuasive-Pairs of pairs of pairs of a short text and its rewrite by an LLM to amplify or diminish persuasive language.
arXiv Detail & Related papers (2024-06-25T17:40:47Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
This study explores how humans can best leverage LLMs for writing and how interacting with these models affects feelings of ownership and trust in the writing process.
While LLMs alone can generate satisfactory news headlines, on average, human control is needed to fix undesirable model outputs.
arXiv Detail & Related papers (2023-10-16T15:11:01Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
Large Language Models (LLMs) generate false, erroneous, or misleading content.
LLMs can be exploited for malicious applications.
This poses a significant challenge to society in terms of the potential deception of users.
arXiv Detail & Related papers (2023-10-08T14:55:02Z) - Voluminous yet Vacuous? Semantic Capital in an Age of Large Language
Models [0.0]
Large Language Models (LLMs) have emerged as transformative forces in the realm of natural language processing, wielding the power to generate human-like text.
This paper explores the evolution, capabilities, and limitations of these models, while highlighting ethical concerns they raise.
arXiv Detail & Related papers (2023-05-29T09:26:28Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.