Scalable Simulation-free Entropic Unbalanced Optimal Transport
- URL: http://arxiv.org/abs/2410.02656v2
- Date: Mon, 21 Oct 2024 20:50:35 GMT
- Title: Scalable Simulation-free Entropic Unbalanced Optimal Transport
- Authors: Jaemoo Choi, Jaewoong Choi,
- Abstract summary: We introduce a scalable and simulation-free approach for solving the Entropic Unbalanced Optimal Transport (EUOT) problem.
By leveraging these properties, we propose a simulation-free algorithm to solve EUOT, called Simulation-free EUOT (SF-EUOT)
- Score: 3.9901365062418312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Optimal Transport (OT) problem investigates a transport map that connects two distributions while minimizing a given cost function. Finding such a transport map has diverse applications in machine learning, such as generative modeling and image-to-image translation. In this paper, we introduce a scalable and simulation-free approach for solving the Entropic Unbalanced Optimal Transport (EUOT) problem. We derive the dynamical form of this EUOT problem, which is a generalization of the Schr\"odinger bridges (SB) problem. Based on this, we derive dual formulation and optimality conditions of the EUOT problem from the stochastic optimal control interpretation. By leveraging these properties, we propose a simulation-free algorithm to solve EUOT, called Simulation-free EUOT (SF-EUOT). While existing SB models require expensive simulation costs during training and evaluation, our model achieves simulation-free training and one-step generation by utilizing the reciprocal property. Our model demonstrates significantly improved scalability in generative modeling and image-to-image translation tasks compared to previous SB methods.
Related papers
- Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
We propose a hybrid modeling workflow for process-based hydrologic models and machine learning surrogate models.
As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge site.
Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings.
arXiv Detail & Related papers (2024-07-30T15:24:27Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
We present simulation-free score and flow matching ([SF]$2$M)
Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous flows.
Notably, [SF]$2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks simulated data.
arXiv Detail & Related papers (2023-07-07T15:42:35Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Sample-Efficient and Surrogate-Based Design Optimization of Underwater Vehicle Hulls [0.4543820534430522]
We show that theBO-LCB algorithm is the most sample-efficient optimization framework and has the best convergence behavior of those considered.
We also show that our DNN-based surrogate model predicts drag force on test data in tight agreement with CFD simulations, with a mean absolute percentage error (MAPE) of 1.85%.
We demonstrate a two-orders-of-magnitude speedup for the design optimization process when the surrogate model is used.
arXiv Detail & Related papers (2023-04-24T19:52:42Z) - Surrogate Neural Networks for Efficient Simulation-based Trajectory
Planning Optimization [28.292234483886947]
This paper presents a novel methodology that uses surrogate models in the form of neural networks to reduce the computation time of simulation-based optimization of a reference trajectory.
We find a 74% better-performing reference trajectory compared to nominal, and the numerical results clearly show a substantial reduction in computation time for designing future trajectories.
arXiv Detail & Related papers (2023-03-30T15:44:30Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Parallel Bayesian Optimization of Agent-based Transportation Simulation [0.4129225533930965]
MATSim is an open source large-scale agent-based transportation planning project applied to various areas like road transport, public transport, freight transport, regional evacuation, etc.
The agents from the BEAM simulation exhibit'mode choice' behavior based on multinomial logit model.
In our study, we consider eight mode choices viz. bike, car, walk, ride hail, driving to transit, walking to transit, ride hail to transit, and ride hail pooling.
We present a parallel Bayesian optimization method with early stopping rule to achieve fast convergence for the given multi-in-multi-out problem to its optimal
arXiv Detail & Related papers (2022-07-11T17:49:29Z) - Likelihood Training of Schr\"odinger Bridge using Forward-Backward SDEs
Theory [29.82841891919951]
It remains unclear whether the optimization principle of SB relates to the modern training of deep generative models.
We present a novel computational framework for likelihood training of SB models grounded on Forward-Backward Theory.
We show that the resulting training achieves comparable results on generating realistic images on MNIST, CelebA, and CIFAR10.
arXiv Detail & Related papers (2021-10-21T17:18:59Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.