AlphaIntegrator: Transformer Action Search for Symbolic Integration Proofs
- URL: http://arxiv.org/abs/2410.02666v1
- Date: Thu, 3 Oct 2024 16:50:30 GMT
- Title: AlphaIntegrator: Transformer Action Search for Symbolic Integration Proofs
- Authors: Mert Ünsal, Timon Gehr, Martin Vechev,
- Abstract summary: We present the first correct-by-construction learning-based system for step-by-step mathematical integration.
The key idea is to learn a policy, represented by a GPT transformer model, which guides the search for the right mathematical integration rule.
We introduce a symbolic engine with axiomatically correct actions on mathematical expressions, as well as the first dataset for step-by-step integration.
- Score: 3.618534280726541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first correct-by-construction learning-based system for step-by-step mathematical integration. The key idea is to learn a policy, represented by a GPT transformer model, which guides the search for the right mathematical integration rule, to be carried out by a symbolic solver. Concretely, we introduce a symbolic engine with axiomatically correct actions on mathematical expressions, as well as the first dataset for step-by-step integration. Our GPT-style transformer model, trained on this synthetic data, demonstrates strong generalization by surpassing its own data generator in accuracy and efficiency, using 50% fewer search steps. Our experimental results with SoTA LLMs also demonstrate that the standard approach of fine-tuning LLMs on a set of question-answer pairs is insufficient for solving this mathematical task. This motivates the importance of discovering creative methods for combining LLMs with symbolic reasoning engines, of which our work is an instance.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - The Liouville Generator for Producing Integrable Expressions [0.0]
We present here a method to generate integrands that are guaranteed to be integrable, dubbed the LIOUVILLE method.
It is based on Liouville's theorem and the Parallel Risch Algorithm for symbolic integration.
arXiv Detail & Related papers (2024-06-17T15:13:36Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - LLM4ED: Large Language Models for Automatic Equation Discovery [0.8644909837301149]
We introduce a new framework that utilizes natural language-based prompts to guide large language models in automatically mining governing equations from data.
Specifically, we first utilize the generation capability of LLMs to generate diverse equations in string form, and then evaluate the generated equations based on observations.
Experiments are extensively conducted on both partial differential equations and ordinary differential equations.
arXiv Detail & Related papers (2024-05-13T14:03:49Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Personalized Algorithm Generation: A Case Study in Meta-Learning ODE
Integrators [6.457555233038933]
We study the meta-learning of numerical algorithms for scientific computing.
We develop a machine learning approach that automatically learns solvers for initial value problems.
arXiv Detail & Related papers (2021-05-04T05:42:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.