HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
- URL: http://arxiv.org/abs/2410.02694v2
- Date: Thu, 10 Oct 2024 15:31:01 GMT
- Title: HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
- Authors: Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat, Danqi Chen,
- Abstract summary: We present HELMET, a comprehensive benchmark encompassing seven diverse, application-centric categories.
We find that synthetic tasks like NIAH are not good predictors of downstream performance.
While most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning.
- Score: 34.205934899868346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address many issues in previous benchmarks by adding controllable lengths up to 128k tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 51 LCLMs, we find that (1) synthetic tasks like NIAH are not good predictors of downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlation with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning or following complex instructions -- the gap widens with increased lengths. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and more predictive of other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.
Related papers
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
We study the ability of an MLLM model to produce semantically similar or identical responses to semantically similar queries.
We propose the MM-R$3$ benchmark, which analyses the performance in terms of consistency and accuracy in SoTA MLLMs.
Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Cleared for Takeoff? Compositional & Conditional Reasoning may be the Achilles Heel to (Flight-Booking) Language Agents [12.391420075730242]
We study compositional and conditional reasoning, two cornerstones of human cognition, and introduce GroundCocoa.
Our task involves aligning detailed user preferences with available flight options presented in a multiple-choice format.
Results indicate a significant disparity in performance among current state-of-the-art LLMs with even the best performing model, GPT-4 Turbo, not exceeding 67% accuracy despite advanced prompting techniques.
arXiv Detail & Related papers (2024-04-05T17:36:26Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks.
This paper outlines and validates GenCeption, a novel, annotation-free evaluation method.
It requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate.
arXiv Detail & Related papers (2024-02-22T21:22:04Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.