StoryBench: A Dynamic Benchmark for Evaluating Long-Term Memory with Multi Turns
- URL: http://arxiv.org/abs/2506.13356v1
- Date: Mon, 16 Jun 2025 10:54:31 GMT
- Title: StoryBench: A Dynamic Benchmark for Evaluating Long-Term Memory with Multi Turns
- Authors: Luanbo Wan, Weizhi Ma,
- Abstract summary: Long-term memory is essential for large language models to achieve autonomous intelligence.<n>Existing benchmarks face challenges in evaluating knowledge retention and dynamic sequential reasoning.<n>We propose a novel benchmark framework based on interactive fiction games.
- Score: 7.60350050736492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term memory (LTM) is essential for large language models (LLMs) to achieve autonomous intelligence in complex, evolving environments. Despite increasing efforts in memory-augmented and retrieval-based architectures, there remains a lack of standardized benchmarks to systematically evaluate LLMs' long-term memory abilities. Existing benchmarks still face challenges in evaluating knowledge retention and dynamic sequential reasoning, and in their own flexibility, all of which limit their effectiveness in assessing models' LTM capabilities. To address these gaps, we propose a novel benchmark framework based on interactive fiction games, featuring dynamically branching storylines with complex reasoning structures. These structures simulate real-world scenarios by requiring LLMs to navigate hierarchical decision trees, where each choice triggers cascading dependencies across multi-turn interactions. Our benchmark emphasizes two distinct settings to test reasoning complexity: one with immediate feedback upon incorrect decisions, and the other requiring models to independently trace back and revise earlier choices after failure. As part of this benchmark, we also construct a new dataset designed to test LLMs' LTM within narrative-driven environments. We further validate the effectiveness of our approach through detailed experiments. Experimental results demonstrate the benchmark's ability to robustly and reliably assess LTM in LLMs.
Related papers
- LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - DEEPQUESTION: Systematic Generation of Real-World Challenges for Evaluating LLMs Performance [3.9770095824794516]
We introduce DeepQuestion, a scalable automated framework that augments existing datasets based on Bloom's taxonomy.<n>We show substantial performance drops (even up to 70% accuracy loss) on higher-order tasks, underscoring persistent gaps in deep reasoning.
arXiv Detail & Related papers (2025-05-30T12:39:42Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models [46.07900122810749]
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging.
We contend that utilizing existing relational databases is a promising approach for constructing benchmarks.
We propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark.
arXiv Detail & Related papers (2024-03-08T12:42:36Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - NPHardEval: Dynamic Benchmark on Reasoning Ability of Large Language
Models via Complexity Classes [32.154637177467684]
NPHardEval is designed to evaluate the reasoning abilities of Large Language Models (LLMs) across a broad spectrum of 900 questions.
It is meticulously chosen to represent a wide range of complexity class below the NP-hard complexity class.
It is designed with a dynamic update mechanism, where the datapoints are refreshed on a monthly basis.
arXiv Detail & Related papers (2023-12-22T18:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.