Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments
- URL: http://arxiv.org/abs/2410.02732v1
- Date: Thu, 3 Oct 2024 17:50:19 GMT
- Title: Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments
- Authors: Lara Laban, Mariusz Wzorek, Piotr Rudol, Tommy Persson,
- Abstract summary: This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigating complex environments requires Unmanned Aerial Vehicles (UAVs) and autonomous systems to perform trajectory tracking and obstacle avoidance in real-time. While many control strategies have effectively utilized linear approximations, addressing the non-linear dynamics of UAV, especially in obstacle-dense environments, remains a key challenge that requires further research. This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100, addressing these challenges by using a dynamic model and B-spline interpolation for smooth reference trajectories, ensuring minimal deviation while respecting safety constraints. The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers. The framework utilizes CasADi for efficient real-time optimization, enabling the UAV to maintain robust operation even under tight computational constraints. Simulation and real-world indoor and outdoor experiments demonstrated the NMPC ability to adapt to disturbances, resulting in smooth, collision-free navigation.
Related papers
- Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
This paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight.
We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time.
arXiv Detail & Related papers (2023-11-21T08:09:00Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Approximate Robust NMPC using Reinforcement Learning [0.0]
We present a Reinforcement Learning-based Robust Model Predictive Control (RL-RNMPC) for controlling nonlinear systems in the presence of disturbances and uncertainties.
arXiv Detail & Related papers (2021-04-06T18:34:58Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.