論文の概要: Data Similarity-Based One-Shot Clustering for Multi-Task Hierarchical Federated Learning
- arxiv url: http://arxiv.org/abs/2410.02733v1
- Date: Thu, 3 Oct 2024 17:51:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:13:18.734502
- Title: Data Similarity-Based One-Shot Clustering for Multi-Task Hierarchical Federated Learning
- Title(参考訳): マルチタスク階層型フェデレーション学習のためのデータ類似性に基づくワンショットクラスタリング
- Authors: Abdulmoneam Ali, Ahmed Arafa,
- Abstract要約: 本研究では,データの類似性に基づいてユーザを効果的に識別し,グループ化できるワンショットクラスタリングアルゴリズムを提案する。
提案アルゴリズムはクラスタリングプロセスを強化するだけでなく,プライバシの懸念や通信のオーバーヘッド,学習モデルや損失関数の振る舞いに関する事前知識の必要性といった課題も克服する。
- 参考スコア(独自算出の注目度): 8.37314799155978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of cluster identity estimation in a hierarchical federated learning setting in which users work toward learning different tasks. To overcome the challenge of task heterogeneity, users need to be grouped in a way such that users with the same task are in the same group, conducting training together, while sharing the weights of feature extraction layers with the other groups. Toward that end, we propose a one-shot clustering algorithm that can effectively identify and group users based on their data similarity. This enables more efficient collaboration and sharing of a common layer representation within the federated learning system. Our proposed algorithm not only enhances the clustering process, but also overcomes challenges related to privacy concerns, communication overhead, and the need for prior knowledge about learning models or loss function behaviors. We validate our proposed algorithm using various datasets such as CIFAR-10 and Fashion MNIST, and show that it outperforms the baseline in terms of accuracy and variance reduction.
- Abstract(参考訳): 本稿では,ユーザが異なるタスクを学習するための階層的フェデレーション学習環境において,クラスタの同一性推定の問題に対処する。
タスクの不均一性の課題を克服するためには、同じタスクを持つユーザが同じグループに属しながら、他のグループと特徴抽出層の重みを共有しながら、一緒にトレーニングを行うように、ユーザをグループ化する必要がある。
そこで本研究では,データの類似性に基づいてユーザを効果的に識別し,グループ化する,ワンショットクラスタリングアルゴリズムを提案する。
これにより、連合学習システム内の共通レイヤ表現のより効率的なコラボレーションと共有が可能になる。
提案アルゴリズムはクラスタリングプロセスを強化するだけでなく,プライバシの懸念や通信のオーバーヘッド,学習モデルや損失関数の振る舞いに関する事前知識の必要性といった課題も克服する。
CIFAR-10 や Fashion MNIST などの様々なデータセットを用いて提案アルゴリズムの有効性を検証し,精度と分散率の点でベースラインよりも優れていることを示す。
関連論文リスト
- Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Federated Two Stage Decoupling With Adaptive Personalization Layers [5.69361786082969]
フェデレーション学習は、プライバシ制約を維持しながら分散学習を可能にする能力によって、大きな注目を集めている。
本質的には、学習の劣化と収束速度の低下を経験する。
等質なクライアントを同じ群にクラスタリングするという概念を採用することは自然であり、各群内のモデル重みのみを集約することができる。
論文 参考訳(メタデータ) (2023-08-30T07:46:32Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z) - Personalized Federated Learning with Multiple Known Clusters [20.585114235701603]
我々は,ユーザの中に既知のクラスタ構造が存在する場合,個人化フェデレーション学習の問題点を考察する。
直感的なアプローチは、パラメータを規則化し、同じクラスタのユーザが同様のモデルの重みを共有することである。
我々は,各クラスタが独立して通信し,収束結果を導出するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-04-28T16:32:29Z) - The Group Loss++: A deeper look into group loss for deep metric learning [65.19665861268574]
グループ損失 (Group Loss) は、グループの全サンプルに埋め込まれた類似性を強制する微分可能なラベルプロパゲーション法に基づく損失関数である。
4つのデータセットでクラスタリングと画像検索の最先端結果を示し、2人の再識別データセットで競合結果を示す。
論文 参考訳(メタデータ) (2022-04-04T14:09:58Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - An Efficient Framework for Clustered Federated Learning [26.24231986590374]
本稿では,ユーザがクラスタに分散するフェデレーション学習(FL)の問題に対処する。
反復フェデレーションクラスタリングアルゴリズム(IFCA)を提案する。
ニューラルネットワークのような非分割問題では,アルゴリズムが効率的であることを示す。
論文 参考訳(メタデータ) (2020-06-07T08:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。