Data Similarity-Based One-Shot Clustering for Multi-Task Hierarchical Federated Learning
- URL: http://arxiv.org/abs/2410.02733v1
- Date: Thu, 3 Oct 2024 17:51:21 GMT
- Title: Data Similarity-Based One-Shot Clustering for Multi-Task Hierarchical Federated Learning
- Authors: Abdulmoneam Ali, Ahmed Arafa,
- Abstract summary: We propose a one-shot clustering algorithm that can effectively identify and group users based on their data similarity.
Our proposed algorithm not only enhances the clustering process, but also overcomes challenges related to privacy concerns, communication overhead, and the need for prior knowledge about learning models or loss function behaviors.
- Score: 8.37314799155978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of cluster identity estimation in a hierarchical federated learning setting in which users work toward learning different tasks. To overcome the challenge of task heterogeneity, users need to be grouped in a way such that users with the same task are in the same group, conducting training together, while sharing the weights of feature extraction layers with the other groups. Toward that end, we propose a one-shot clustering algorithm that can effectively identify and group users based on their data similarity. This enables more efficient collaboration and sharing of a common layer representation within the federated learning system. Our proposed algorithm not only enhances the clustering process, but also overcomes challenges related to privacy concerns, communication overhead, and the need for prior knowledge about learning models or loss function behaviors. We validate our proposed algorithm using various datasets such as CIFAR-10 and Fashion MNIST, and show that it outperforms the baseline in terms of accuracy and variance reduction.
Related papers
- Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - Federated Two Stage Decoupling With Adaptive Personalization Layers [5.69361786082969]
Federated learning has gained significant attention due to its ability to enable distributed learning while maintaining privacy constraints.
It inherently experiences significant learning degradation and slow convergence speed.
It is natural to employ the concept of clustering homogeneous clients into the same group, allowing only the model weights within each group to be aggregated.
arXiv Detail & Related papers (2023-08-30T07:46:32Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Personalized Federated Learning with Multiple Known Clusters [20.585114235701603]
We consider the problem of personalized federated learning when there are known cluster structures within users.
An intuitive approach would be to regularize the parameters so that users in the same cluster share similar model weights.
We develop an algorithm that allows each cluster to communicate independently and derive the convergence results.
arXiv Detail & Related papers (2022-04-28T16:32:29Z) - The Group Loss++: A deeper look into group loss for deep metric learning [65.19665861268574]
Group Loss is a loss function based on a differentiable label-propagation method that enforces embedding similarity across all samples of a group.
We show state-of-the-art results on clustering and image retrieval on four datasets, and present competitive results on two person re-identification datasets.
arXiv Detail & Related papers (2022-04-04T14:09:58Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - An Efficient Framework for Clustered Federated Learning [26.24231986590374]
We address the problem of federated learning (FL) where users are distributed into clusters.
We propose the Iterative Federated Clustering Algorithm (IFCA)
We show that our algorithm is efficient in non- partitioned problems such as neural networks.
arXiv Detail & Related papers (2020-06-07T08:48:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.