Personalized Federated Learning with Multiple Known Clusters
- URL: http://arxiv.org/abs/2204.13619v1
- Date: Thu, 28 Apr 2022 16:32:29 GMT
- Title: Personalized Federated Learning with Multiple Known Clusters
- Authors: Boxiang Lyu, Filip Hanzely, Mladen Kolar
- Abstract summary: We consider the problem of personalized federated learning when there are known cluster structures within users.
An intuitive approach would be to regularize the parameters so that users in the same cluster share similar model weights.
We develop an algorithm that allows each cluster to communicate independently and derive the convergence results.
- Score: 20.585114235701603
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider the problem of personalized federated learning when there are
known cluster structures within users. An intuitive approach would be to
regularize the parameters so that users in the same cluster share similar model
weights. The distances between the clusters can then be regularized to reflect
the similarity between different clusters of users. We develop an algorithm
that allows each cluster to communicate independently and derive the
convergence results. We study a hierarchical linear model to theoretically
demonstrate that our approach outperforms agents learning independently and
agents learning a single shared weight. Finally, we demonstrate the advantages
of our approach using both simulated and real-world data.
Related papers
- A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data.
We present a unified Bayesian framework for clustered FL which associates clients to clusters.
This work provides insights on client-cluster associations and enables client knowledge sharing in new ways.
arXiv Detail & Related papers (2024-10-20T19:11:24Z) - Data Similarity-Based One-Shot Clustering for Multi-Task Hierarchical Federated Learning [8.37314799155978]
We propose a one-shot clustering algorithm that can effectively identify and group users based on their data similarity.
Our proposed algorithm not only enhances the clustering process, but also overcomes challenges related to privacy concerns, communication overhead, and the need for prior knowledge about learning models or loss function behaviors.
arXiv Detail & Related papers (2024-10-03T17:51:21Z) - Federated Two Stage Decoupling With Adaptive Personalization Layers [5.69361786082969]
Federated learning has gained significant attention due to its ability to enable distributed learning while maintaining privacy constraints.
It inherently experiences significant learning degradation and slow convergence speed.
It is natural to employ the concept of clustering homogeneous clients into the same group, allowing only the model weights within each group to be aggregated.
arXiv Detail & Related papers (2023-08-30T07:46:32Z) - ClusterNet: A Perception-Based Clustering Model for Scattered Data [16.326062082938215]
Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques.
We propose a learning strategy which directly operates on scattered data.
We train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability.
arXiv Detail & Related papers (2023-04-27T13:41:12Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Integrating Auxiliary Information in Self-supervised Learning [94.11964997622435]
We first observe that the auxiliary information may bring us useful information about data structures.
We present to construct data clusters according to the auxiliary information.
We show that Cl-InfoNCE may be a better approach to leverage the data clustering information.
arXiv Detail & Related papers (2021-06-05T11:01:15Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
We propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation.
In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively.
arXiv Detail & Related papers (2021-05-31T22:59:31Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.