SIEVE: General Purpose Data Filtering System Matching GPT-4o Accuracy at 1% the Cost
- URL: http://arxiv.org/abs/2410.02755v2
- Date: Tue, 8 Oct 2024 18:30:39 GMT
- Title: SIEVE: General Purpose Data Filtering System Matching GPT-4o Accuracy at 1% the Cost
- Authors: Jifan Zhang, Robert Nowak,
- Abstract summary: SIEVE is a lightweight filter that matches GPT-4o accuracy at a fraction of the cost.
We experimentally validate SIEVE on the OpenWebText dataset, using five highly customized filter tasks.
Our results demonstrate the effectiveness and efficiency of our method in curating large, high-quality datasets for language model training.
- Score: 8.406910685074134
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Creating specialized large language models requires vast amounts of clean, special purpose data for training and fine-tuning. With only a handful of existing large-scale, domain-specific datasets, creation of new datasets is required in most applications. This requires the development of new application-specific filtering of web-scale data. Filtering with a high-performance, general-purpose LLM such as GPT-4o can be highly effective, but this is extremely expensive at web-scale. This paper proposes SIEVE, a lightweight alternative that matches GPT-4o accuracy at a fraction of the cost. SIEVE can perform up to 500 filtering operations for the cost of one GPT-4o filtering call. The key to SIEVE is a seamless integration of GPT-4o and lightweight T5 models, using active learning to fine-tune T5 in the background with a small number of calls to GPT-4o. Once trained, it performs as well as GPT-4o at a tiny fraction of the cost. We experimentally validate SIEVE on the OpenWebText dataset, using five highly customized filter tasks targeting high quality and domain-specific content. Our results demonstrate the effectiveness and efficiency of our method in curating large, high-quality datasets for language model training at a substantially lower cost (1%) than existing techniques. To further validate SIEVE, experiments show that SIEVE and GPT-4o achieve similar accuracy, with human evaluators preferring SIEVE's filtering results to those of GPT-4o.
Related papers
- TaskComplexity: A Dataset for Task Complexity Classification with In-Context Learning, FLAN-T5 and GPT-4o Benchmarks [0.0]
This paper addresses the challenge of classifying and assigning programming tasks to experts.
A novel dataset containing a total of 4,112 programming tasks was created by extracting tasks from various websites.
Web scraping techniques were employed to collect this dataset of programming problems systematically.
arXiv Detail & Related papers (2024-09-30T11:04:56Z) - RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs [60.38044044203333]
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG)
We propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG.
For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks.
arXiv Detail & Related papers (2024-07-02T17:59:17Z) - GPT4Vis: What Can GPT-4 Do for Zero-shot Visual Recognition? [82.40761196684524]
This paper centers on the evaluation of GPT-4's linguistic and visual capabilities in zero-shot visual recognition tasks.
We conduct extensive experiments to evaluate GPT-4's performance across images, videos, and point clouds.
Our findings show that GPT-4, enhanced with rich linguistic descriptions, significantly improves zero-shot recognition.
arXiv Detail & Related papers (2023-11-27T11:29:10Z) - Using GPT-4 to Augment Unbalanced Data for Automatic Scoring [0.5586073503694489]
We introduce a novel text data augmentation framework leveraging GPT-4, a generative large language model.
We crafted prompts for GPT-4 to generate responses, especially for minority scoring classes.
We finetuned DistillBERT for automatic scoring based on the augmented and original datasets.
arXiv Detail & Related papers (2023-10-25T01:07:50Z) - ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction [52.14681890859275]
E-commerce platforms require structured product data in the form of attribute-value pairs.
BERT-based extraction methods require large amounts of task-specific training data.
This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative.
arXiv Detail & Related papers (2023-10-19T07:39:00Z) - Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts [13.486599520658919]
GPT-4 can be used to generate text that is visually descriptive.
We show considerable improvements in 0-shot transfer accuracy on specialized fine-grained datasets.
arXiv Detail & Related papers (2023-07-21T15:49:59Z) - Is GPT-4 a Good Data Analyst? [67.35956981748699]
We consider GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains.
We design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4.
Experimental results show that GPT-4 can achieve comparable performance to humans.
arXiv Detail & Related papers (2023-05-24T11:26:59Z) - Instruction Tuning with GPT-4 [107.55078894215798]
We present the first attempt to use GPT-4 to generate instruction-following data for finetuning large language models.
Our early experiments on instruction-tuned LLaMA models show that the 52K English and Chinese instruction-following data generated by GPT-4 leads to superior zero-shot performance on new tasks.
arXiv Detail & Related papers (2023-04-06T17:58:09Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4 is a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
It exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers.
arXiv Detail & Related papers (2023-03-15T17:15:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.