論文の概要: Learning variant product relationship and variation attributes from e-commerce website structures
- arxiv url: http://arxiv.org/abs/2410.02779v1
- Date: Tue, 17 Sep 2024 18:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:54:19.828359
- Title: Learning variant product relationship and variation attributes from e-commerce website structures
- Title(参考訳): 電子商取引Webサイト構造からの異種製品関係と変種特性の学習
- Authors: Pedro Herrero-Vidal, You-Lin Chen, Cris Liu, Prithviraj Sen, Lichao Wang,
- Abstract要約: 我々は,電子商取引カタログにおける変種商品のペアを特定するために,変種関係マッチング戦略であるVARMを導入する。
我々はRAG誘導生成LDMを用いて変異産物群間の変異と共通属性を抽出する。
- 参考スコア(独自算出の注目度): 5.273938705774915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce VARM, variant relationship matcher strategy, to identify pairs of variant products in e-commerce catalogs. Traditional definitions of entity resolution are concerned with whether product mentions refer to the same underlying product. However, this fails to capture product relationships that are critical for e-commerce applications, such as having similar, but not identical, products listed on the same webpage or share reviews. Here, we formulate a new type of entity resolution in variant product relationships to capture these similar e-commerce product links. In contrast with the traditional definition, the new definition requires both identifying if two products are variant matches of each other and what are the attributes that vary between them. To satisfy these two requirements, we developed a strategy that leverages the strengths of both encoding and generative AI models. First, we construct a dataset that captures webpage product links, and therefore variant product relationships, to train an encoding LLM to predict variant matches for any given pair of products. Second, we use RAG prompted generative LLMs to extract variation and common attributes amongst groups of variant products. To validate our strategy, we evaluated model performance using real data from one of the world's leading e-commerce retailers. The results showed that our strategy outperforms alternative solutions and paves the way to exploiting these new type of product relationships.
- Abstract(参考訳): 我々は,電子商取引カタログにおける変種商品のペアを特定するために,変種関係マッチング戦略であるVARMを導入する。
従来のエンティティ解決の定義は、製品の言及が同じ製品を指すかどうかに関係している。
しかし、これはeコマースアプリケーションにとって重要な製品関係を捉えるのに失敗する。
ここでは、これらの類似のeコマース製品リンクをキャプチャするために、変種製品関係における新しいタイプのエンティティ解決を定式化する。
従来の定義とは対照的に、新しい定義では、2つの積が互いに異なるマッチであるかどうかと、それらの間に異なる属性があるのかを識別する必要がある。
これら2つの要件を満たすため、エンコーディングと生成AIモデルの長所を活用する戦略を開発した。
まず、Webページの製品リンクをキャプチャし、従って異なる製品関係をキャプチャーするデータセットを構築し、コーディング LLM をトレーニングして、任意の製品に対する変動マッチングを予測する。
第2に,RAGを誘導する生成LDMを用いて,異種製品群間の変異や共通属性を抽出する。
当社の戦略を検証するため,世界有数のeコマース小売業者の実際のデータを用いて,モデル性能を評価した。
その結果、私たちの戦略は代替ソリューションよりも優れており、これらの新しいタイプの製品関係を活用する方法を舗装していることがわかった。
関連論文リスト
- MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - Text-Based Product Matching -- Semi-Supervised Clustering Approach [9.748519919202986]
本稿では,半教師付きクラスタリング手法を用いた製品マッチングの新しい哲学を提案する。
実世界のデータセット上でIDECアルゴリズムを実験することにより,本手法の特性について検討する。
論文 参考訳(メタデータ) (2024-02-01T18:52:26Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
本稿では,分類のためのBERT,属性値抽出のための条件付きランダムフィールド(CRF)層,データアノテーションのための大規模言語モデル(LLM)を統合した先駆的フレームワークを提案する。
提案手法は, CRFのシーケンス復号技術と相乗化したBERTの頑健な表現学習を利用して, 属性値の同定と抽出を行う。
私たちの方法論は、Walmart、BestBuyのEコマースNERデータセット、CoNLLデータセットなど、さまざまなデータセットで厳格に検証されています。
論文 参考訳(メタデータ) (2023-12-09T08:26:30Z) - JPAVE: A Generation and Classification-based Model for Joint Product
Attribute Prediction and Value Extraction [59.94977231327573]
JPAVEと呼ばれる値生成/分類と属性予測を備えたマルチタスク学習モデルを提案する。
我々のモデルの2つの変種は、オープンワールドとクローズドワールドのシナリオのために設計されている。
公開データセットにおける実験結果は,強いベースラインと比較して,我々のモデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:36:16Z) - Product Information Extraction using ChatGPT [69.12244027050454]
本稿では,製品記述から属性/値対を抽出するChatGPTの可能性について検討する。
以上の結果から,ChatGPTは事前学習した言語モデルに類似した性能を達成できるが,微調整を行うにはトレーニングデータや計算処理がはるかに少ないことが示唆された。
論文 参考訳(メタデータ) (2023-06-23T09:30:01Z) - Unified Vision-Language Representation Modeling for E-Commerce
Same-Style Products Retrieval [12.588713044749177]
電子商取引プラットフォームでは,同種の商品検索が重要な役割を担っている。
電子商取引同型商品検索のための統合視覚言語モデリング手法を提案する。
クロスモーダルな製品間検索、スタイル転送、ユーザ対話型検索が可能である。
論文 参考訳(メタデータ) (2023-02-10T07:24:23Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Interpretable Methods for Identifying Product Variants [0.2589904091148018]
製品の種類を識別する新しい手法を提案する。
制約付きクラスタリングと調整されたNLP技術を組み合わせている。
精度の高い要求を満たすなど、特定のビジネス基準を満たすアルゴリズムを設計します。
論文 参考訳(メタデータ) (2021-04-12T14:37:16Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
そこで我々はMetaBridgeと呼ばれる新しいメタ学習潜伏変数アプローチを提案する。
限られたラベル付きデータを持つカテゴリのサブセットから、転送可能な知識を学ぶことができる。
ラベルのないデータで、目に見えないカテゴリの不確実性を捉えることができる。
論文 参考訳(メタデータ) (2020-06-15T21:31:05Z) - Inferential Text Generation with Multiple Knowledge Sources and
Meta-Learning [117.23425857240679]
本研究では,テキストティフ・エルス関係のような多種多様なコモンセンスのイベントの推論テキストを生成する問題について検討する。
既存のアプローチでは、トレーニング例からの限られた証拠を使用して、個々の関係について学習するのが一般的である。
この研究では、モデルのための燃料として複数の知識ソースを使用します。
論文 参考訳(メタデータ) (2020-04-07T01:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。