Effective Intrusion Detection for UAV Communications using Autoencoder-based Feature Extraction and Machine Learning Approach
- URL: http://arxiv.org/abs/2410.02827v1
- Date: Tue, 1 Oct 2024 08:44:23 GMT
- Title: Effective Intrusion Detection for UAV Communications using Autoencoder-based Feature Extraction and Machine Learning Approach
- Authors: Tuan-Cuong Vuong, Cong Chi Nguyen, Van-Cuong Pham, Thi-Thanh-Huyen Le, Xuan-Nam Tran, Thien Van Luong,
- Abstract summary: We propose an autoencoder-based machine learning intrusion detection method for UAVs using actual dataset.
Our experiment results show that the proposed method outperforms the baselines in both binary and multi-class classification tasks.
- Score: 2.3845721581271206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel intrusion detection method for unmanned aerial vehicles (UAV) in the presence of recent actual UAV intrusion dataset. In particular, in the first stage of our method, we design an autoencoder architecture for effectively extracting important features, which are then fed into various machine learning models in the second stage for detecting and classifying attack types. To the best of our knowledge, this is the first attempt to propose such the autoencoder-based machine learning intrusion detection method for UAVs using actual dataset, while most of existing works only consider either simulated datasets or datasets irrelevant to UAV communications. Our experiment results show that the proposed method outperforms the baselines such as feature selection schemes in both binary and multi-class classification tasks.
Related papers
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs)
This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution.
The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations.
arXiv Detail & Related papers (2024-08-29T13:00:37Z) - Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge [20.459377705070043]
This report presents the 1st winning model for UG2+, a task in CVPR 2024 UAV Tracking and Pose-Estimation Challenge.
We propose a multi-modal UAV detection, classification, and 3D tracking method for accurate UAV classification and tracking.
Our system integrates cutting-edge classification techniques and sophisticated post-processing steps to boost accuracy and robustness.
arXiv Detail & Related papers (2024-05-26T07:21:18Z) - Archangel: A Hybrid UAV-based Human Detection Benchmark with Position
and Pose Metadata [10.426019628829204]
Archangel is the first UAV-based object detection dataset composed of real and synthetic subsets.
A series of experiments are carefully designed with a state-of-the-art object detector to demonstrate the benefits of leveraging the metadata.
arXiv Detail & Related papers (2022-08-31T21:45:16Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A Comprehensive Approach for UAV Small Object Detection with
Simulation-based Transfer Learning and Adaptive Fusion [0.0]
Deep learning is widely adopted for UAV object detection whereas researches on this topic are limited by the amount of dataset and small scale of UAV.
To tackle these problems, a novel comprehensive approach that combines transfer learning based on simulation data and adaptive fusion is proposed.
Experiment results demonstrate the effectiveness of simulation-based transfer learning which leads to a 2.7% performance increase on UAV object detection.
arXiv Detail & Related papers (2021-09-04T06:27:13Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
We propose a method to automatically generate training labels (called pseudo-labels) for 2D LiDAR-based person detectors.
We show that self-supervised detectors, trained or fine-tuned with pseudo-labels, outperform detectors trained using manual annotations.
Our method is an effective way to improve person detectors during deployment without any additional labeling effort.
arXiv Detail & Related papers (2020-12-16T12:10:04Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.