論文の概要: YouTube Video Analytics for Patient Engagement: Evidence from Colonoscopy Preparation Videos
- arxiv url: http://arxiv.org/abs/2410.02830v1
- Date: Tue, 1 Oct 2024 19:38:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:24:53.744754
- Title: YouTube Video Analytics for Patient Engagement: Evidence from Colonoscopy Preparation Videos
- Title(参考訳): YouTube Video Analytics for patient Engagement: Evidence from Colonoscopy prepared Videos (特集 患者のエンゲージメントのためのYouTubeビデオ分析)
- Authors: Yawen Guo, Xiao Liu, Anjana Susarla, Padman Rema,
- Abstract要約: 本研究は,YouTubeビデオから医療情報を検索する手法を用いたデータ分析パイプラインを実証する。
まず、YouTube Data APIを使用して、検索キーワードの検索に望ましいビデオのメタデータを収集します。
次に、医療情報、ビデオの可視性、全体的なレコメンデーションについて、YouTubeのビデオ資料に注釈を付ける。
- 参考スコア(独自算出の注目度): 3.7941428390253193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Videos can be an effective way to deliver contextualized, just-in-time medical information for patient education. However, video analysis, from topic identification and retrieval to extraction and analysis of medical information and understandability from a patient perspective are extremely challenging tasks. This study demonstrates a data analysis pipeline that utilizes methods to retrieve medical information from YouTube videos on preparing for a colonoscopy exam, a much maligned and disliked procedure that patients find challenging to get adequately prepared for. We first use the YouTube Data API to collect metadata of desired videos on select search keywords and use Google Video Intelligence API to analyze texts, frames and objects data. Then we annotate the YouTube video materials on medical information, video understandability and overall recommendation. We develop a bidirectional long short-term memory (BiLSTM) model to identify medical terms in videos and build three classifiers to group videos based on the levels of encoded medical information and video understandability, and whether the videos are recommended or not. Our study provides healthcare stakeholders with guidelines and a scalable approach for generating new educational video content to enhance management of a vast number of health conditions.
- Abstract(参考訳): ビデオは、コンテキスト化された、ジャスト・イン・タイムの医療情報を患者教育に届ける効果的な方法である。
しかし, トピック識別・検索から医療情報の抽出・分析, 患者の視点からの理解可能性まで, 映像解析は極めて困難な課題である。
本研究は, 大腸内視鏡検査の準備にYouTubeビデオから医療情報を検索する手法を利用するデータ解析パイプラインを実証した。
まず、YouTube Data APIを使って、検索キーワードの選択したビデオのメタデータを収集し、Google Video Intelligence APIを使ってテキスト、フレーム、オブジェクトデータを分析します。
次に、医療情報、ビデオの可視性、全体的なレコメンデーションについて、YouTubeのビデオ資料に注釈を付ける。
我々は,ビデオ内の医療用語を識別し,符号化された医療情報と映像理解能力のレベルに基づいて,動画をグループ化するための3つの分類器を構築するために,双方向長短期記憶(BiLSTM)モデルを開発した。
本研究は、医療関係者に対して、多数の健康状態の管理を強化するために、新しい教育ビデオコンテンツを作成するためのガイドラインとスケーラブルなアプローチを提供する。
関連論文リスト
- Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - Detours for Navigating Instructional Videos [58.1645668396789]
We propose VidDetours, a video-lang approach that learn to retrieve the target temporal segments from a large repository of how-to's。
本稿では,ビデオ検索と質問応答の最良の方法に比べて,モデルが大幅に改善し,リコール率が35%を超えることを示す。
論文 参考訳(メタデータ) (2024-01-03T16:38:56Z) - Video-Bench: A Comprehensive Benchmark and Toolkit for Evaluating
Video-based Large Language Models [81.84810348214113]
ビデオベースの大規模言語モデル(Video-LLMs)が最近導入され、認識と理解の基本的な改善と多様なユーザからの問い合わせの両方をターゲットにしている。
このようなモデルの開発を導くため、堅牢で包括的な評価システムの構築が重要となる。
本稿では,ビデオLLMの評価に特化して設計されたツールキットとともに,新しい総合的なベンチマークであるtextitVideo-Benchを提案する。
論文 参考訳(メタデータ) (2023-11-27T18:59:58Z) - Query-aware Long Video Localization and Relation Discrimination for Deep
Video Understanding [15.697251303126874]
Deep Video Understanding (DVU) Challengeは、マルチモーダル抽出、融合、分析の境界を推し進めることを目的としている。
本稿では,画像言語事前学習モデルを利用して,長時間の動画のローカライゼーションと関係の識別を行うクエリアウェア手法を提案する。
本手法は,映画レベルの問合せの2つのグループにおいて,第1位と第4位を達成した。
論文 参考訳(メタデータ) (2023-10-19T13:26:02Z) - Towards Answering Health-related Questions from Medical Videos: Datasets
and Approaches [21.16331827504689]
多くの個人が、特定のタスクを達成するための一連のステップバイステップの手順を提供するため、指導ビデオを好むようになった。
医療領域からの指導ビデオは、第一支援、救急、および医療教育に関する質問に対する最良の視覚的回答を提供することができる。
医療分野における大規模なデータセットの不足は、公衆の健康に関する質問に役立てるアプリケーションの開発を妨げる重要な課題である。
論文 参考訳(メタデータ) (2023-09-21T16:21:28Z) - InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding
and Generation [90.71796406228265]
InternVidは大規模なビデオ中心のマルチモーダルデータセットで、強力で転送可能なビデオテキスト表現の学習を可能にする。
InternVidデータセットは700万本以上のビデオが760万時間近く持続し、合計4.1Bワードの詳細な記述を伴う234万本のビデオクリップが生成される。
論文 参考訳(メタデータ) (2023-07-13T17:58:32Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
動的および複雑なビデオレベルの理解タスクのための一般的なビデオ基盤モデルであるInternVideoを提案する。
InternVideoは、事前学習対象として、マスク付きビデオモデリングとビデオ言語コントラスト学習を効率的に探索する。
InternVideoは、ビデオアクション認識/検出、ビデオ言語アライメント、オープンワールドビデオアプリケーションなど、39のビデオデータセットの最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-12-06T18:09:49Z) - How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios [73.24092762346095]
情緒応答と主観的幸福感に注釈を付けた6万本以上のビデオを備えた大規模データセットを2つ導入した。
Video Cognitive Empathyデータセットには、微粒な感情応答の分布のためのアノテーションが含まれており、モデルが感情状態の詳細な理解を得ることができる。
Video to Valenceデータセットには、ビデオ間の相対的な快適性のアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-10-18T17:58:25Z) - TL;DW? Summarizing Instructional Videos with Task Relevance &
Cross-Modal Saliency [133.75876535332003]
我々は,ビデオ要約の未探索領域である指導ビデオの要約に焦点をあてる。
既存のビデオ要約データセットは、手動のフレームレベルのアノテーションに依存している。
本稿では,文脈対応の時間的ビデオエンコーダとセグメントスコアリング変換器を組み合わせた指導ビデオ要約ネットワークを提案する。
論文 参考訳(メタデータ) (2022-08-14T04:07:40Z) - A Dataset for Medical Instructional Video Classification and Question
Answering [16.748852458926162]
本稿では,医療ビデオの理解を支援するシステム設計に向けた新たな課題とデータセットについて紹介する。
医療ビデオは多くの救急、救急、医療教育に関する質問に対して、可能な限りの回答を提供するだろうと信じています。
我々は,MedVidCLとMedVidQAデータセットを用いて各タスクをベンチマークし,マルチモーダル学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-30T18:06:31Z) - Ultrasound Video Summarization using Deep Reinforcement Learning [12.320114045092291]
本稿では,医療用ビデオデータのニーズに合わせて,完全自動要約手法を提案する。
本手法は, 代替映像要約法よりも優れており, 臨床診断基準に要求される必須情報を保存できることが示唆された。
論文 参考訳(メタデータ) (2020-05-19T15:44:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。