論文の概要: CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
- arxiv url: http://arxiv.org/abs/2410.02844v3
- Date: Fri, 11 Oct 2024 09:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:24:53.653560
- Title: CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
- Title(参考訳): CAnDOIT: 時系列からの観測データと干渉データによる因果発見
- Authors: Luca Castri, Sariah Mghames, Marc Hanheide, Nicola Bellotto,
- Abstract要約: CAnDOITは、観測データと介入データの両方を用いて因果モデルを再構築する因果発見手法である。
因果解析における介入データの利用は、ロボット工学のような現実世界の応用には不可欠である。
CAnDOITのPython実装も開発され、GitHubで公開されている。
- 参考スコア(独自算出の注目度): 4.008958683836471
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The study of cause-and-effect is of the utmost importance in many branches of science, but also for many practical applications of intelligent systems. In particular, identifying causal relationships in situations that include hidden factors is a major challenge for methods that rely solely on observational data for building causal models. This paper proposes CAnDOIT, a causal discovery method to reconstruct causal models using both observational and interventional time-series data. The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics, where the scenario is highly complex and observational data alone are often insufficient to uncover the correct causal structure. Validation of the method is performed initially on randomly generated synthetic models and subsequently on a well-known benchmark for causal structure learning in a robotic manipulation environment. The experiments demonstrate that the approach can effectively handle data from interventions and exploit them to enhance the accuracy of the causal analysis. A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub: https://github.com/lcastri/causalflow.
- Abstract(参考訳): 原因と効果の研究は科学の多くの分野において最重要であり、知的システムの多くの実践的応用にも重要である。
特に、隠れ要因を含む状況における因果関係の同定は、因果モデルを構築するための観察データのみに依存する手法にとって大きな課題である。
本稿では,観測時系列データと介入時系列データの両方を用いて因果関係モデルを再構成する因果関係探索手法であるCAnDOITを提案する。
因果解析における介入データの使用は、シナリオが複雑であり、観測データだけでは正しい因果構造を明らかにするのに不十分な、ロボット工学のような現実世界の応用にとって不可欠である。
この手法の検証は、まずランダムに生成された合成モデル上で行われ、その後、ロボット操作環境における因果構造学習のためのよく知られたベンチマークで行われる。
実験により、アプローチは介入からのデータを効果的に処理し、それらを活用して因果解析の精度を高めることができることが示された。
CAnDOITのPython実装も開発され、GitHubで公開されている: https://github.com/lcastri/causalflow。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Learning domain-specific causal discovery from time series [7.298647409503783]
時間変化データからの因果発見は神経科学、医学、機械学習において重要である。
人間の専門知識は必ずしも正確ではなく、豊富なデータを持つ領域では優れる傾向がある。
本研究では,データ駆動手法を用いて時系列のドメイン固有因果探索を向上できるかを検討する。
論文 参考訳(メタデータ) (2022-09-12T20:32:39Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - To do or not to do: finding causal relations in smart homes [2.064612766965483]
本稿では,環境と観測データの混合実験から因果モデルを学ぶための新しい手法を提案する。
我々の手法の核心は、選択された介入の使用であり、特に、介入が不可能な変数を考慮に入れた学習である。
本手法をスマートホームシミュレーション,すなわち因果関係を知ることが説明可能なシステムへの道を開くユースケースに応用する。
論文 参考訳(メタデータ) (2021-05-20T22:36:04Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。