論文の概要: Intrinsic Evaluation of RAG Systems for Deep-Logic Questions
- arxiv url: http://arxiv.org/abs/2410.02932v1
- Date: Thu, 3 Oct 2024 19:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:55:13.126482
- Title: Intrinsic Evaluation of RAG Systems for Deep-Logic Questions
- Title(参考訳): 深い論理的問題に対するRAGシステムの本質的評価
- Authors: Junyi Hu, You Zhou, Jie Wang,
- Abstract要約: 本稿では,検索拡張生成(RAG)機構を深い論理的クエリを含むアプリケーションに適用するための本質的な指標である総合性能指標(OPI)を紹介する。
OPIは2つの重要な指標の調和平均として計算される: 論理関係の正確度比(Logical-Relation Correctness Ratio)と BERT の平均値。
- 参考スコア(独自算出の注目度): 2.869056892890114
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce the Overall Performance Index (OPI), an intrinsic metric to evaluate retrieval-augmented generation (RAG) mechanisms for applications involving deep-logic queries. OPI is computed as the harmonic mean of two key metrics: the Logical-Relation Correctness Ratio and the average of BERT embedding similarity scores between ground-truth and generated answers. We apply OPI to assess the performance of LangChain, a popular RAG tool, using a logical relations classifier fine-tuned from GPT-4o on the RAG-Dataset-12000 from Hugging Face. Our findings show a strong correlation between BERT embedding similarity scores and extrinsic evaluation scores. Among the commonly used retrievers, the cosine similarity retriever using BERT-based embeddings outperforms others, while the Euclidean distance-based retriever exhibits the weakest performance. Furthermore, we demonstrate that combining multiple retrievers, either algorithmically or by merging retrieved sentences, yields superior performance compared to using any single retriever alone.
- Abstract(参考訳): 本稿では,検索拡張生成(RAG)機構を深い論理的クエリを含むアプリケーションに適用するための本質的な指標である総合性能指標(OPI)を紹介する。
OPIは2つの重要な指標の調和平均として計算される: 論理関係の正確度比(Logical-Relation Correctness Ratio)と BERT の平均値。
我々は,Hugging FaceのRAG-Dataset-12000上のGPT-4oから微調整された論理関係分類器を用いて,一般的なRAGツールであるLangChainの性能を評価するためにOPIを適用した。
以上の結果から,BERT埋込み類似度スコアと外因性評価スコアとの間には強い相関が認められた。
一般的に使用されるレトリバーのうち、BERTベースの埋め込みを用いたコサイン類似性レトリバーは他よりも優れ、ユークリッド距離に基づくレトリバーは最も弱い性能を示す。
さらに,検索した文をアルゴリズム的に,あるいはマージして,複数のレトリバーを組み合わせることで,単一のレトリバーを単独で使用する場合よりも優れた性能が得られることを示す。
関連論文リスト
- Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers [6.773411876899064]
推測のないスパースモデルは 検索の関連という点で はるかに遅れています スパースモデルと密集したサイムズモデルの両方と比較して
まず,IDF(Inverted Document Frequency)を導入したIFF対応のFLOPS損失を表現のスペーシングに導入する。
その結果、FLOPS正則化が検索関連性に与える影響を軽減し、精度と効率のバランスが良くなることがわかった。
論文 参考訳(メタデータ) (2024-11-07T03:46:43Z) - Beyond Exact Match: Semantically Reassessing Event Extraction by Large Language Models [69.38024658668887]
イベント抽出の現在の評価法はトークンレベルの正確な一致に依存している。
トークンレベルではなくセマンティックレベルでイベント抽出結果を正確に評価する自動評価フレームワークであるRAEEを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:54:01Z) - Improving Retrieval-Augmented Code Comment Generation by Retrieving for Generation [3.123049150077741]
本稿では,生成者のフィードバックから学習し,生成のための模範を検索するための新しい学習手法を提案する。
検索者が検索したハイスコアな例題とジェネレータが観測した低損失な例題とを合わせることで、検索者は生成したコメントの質を最も良くする例題を検索することができる。
論文 参考訳(メタデータ) (2024-08-07T08:32:55Z) - Evaluating Retrieval Quality in Retrieval-Augmented Generation [21.115495457454365]
従来のエンドツーエンド評価手法は計算コストが高い。
本稿では,検索リストの各文書をRAGシステム内の大規模言語モデルで個別に利用するeRAGを提案する。
eRAGは、ランタイムを改善し、エンドツーエンド評価の最大50倍のGPUメモリを消費する、大きな計算上のアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-04-21T21:22:28Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot
Neural Sparse Retrieval [92.27387459751309]
ニューラルスパース検索を評価するための統一PythonツールキットであるSPRINTを提供する。
我々は、よく認識されているベンチマークBEIRにおいて、強く再現可能なゼロショットスパース検索ベースラインを確立する。
SPLADEv2は、元のクエリとドキュメントの外で、ほとんどのトークンでスパース表現を生成する。
論文 参考訳(メタデータ) (2023-07-19T22:48:02Z) - ReFIT: Relevance Feedback from a Reranker during Inference [109.33278799999582]
Retrieve-and-Rerankは、ニューラル情報検索の一般的なフレームワークである。
本稿では,リランカを利用してリコールを改善する手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T15:30:33Z) - Adversarial Retriever-Ranker for dense text retrieval [51.87158529880056]
本稿では、二重エンコーダレトリバーとクロスエンコーダローダからなるAdversarial Retriever-Ranker(AR2)を提案する。
AR2は、既存の高密度レトリバー法より一貫して大幅に優れている。
これには、R@5から77.9%(+2.1%)、TriviaQA R@5から78.2%(+1.4)、MS-MARCO MRR@10から39.5%(+1.3%)の改善が含まれている。
論文 参考訳(メタデータ) (2021-10-07T16:41:15Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。