論文の概要: AiBAT: Artificial Intelligence/Instructions for Build, Assembly, and Test
- arxiv url: http://arxiv.org/abs/2410.02955v1
- Date: Thu, 3 Oct 2024 19:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:45:27.621439
- Title: AiBAT: Artificial Intelligence/Instructions for Build, Assembly, and Test
- Title(参考訳): AiBAT: ビルド、アセンブリ、テストのための人工知能/インストラクション
- Authors: Benjamin Nuernberger, Anny Liu, Heather Stefanini, Richard Otis, Amanda Towler, R. Peter Dillon,
- Abstract要約: AiBATは、IBAT(Instructions for Build, Assembly, and Test)の著者を支援する新しいシステムである。
まず、アセンブリードローイング文書を分析し、情報を抽出し解析し、それから抽出された情報でIBATテンプレートを埋める。
本稿では,AiBATシステムの概要について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instructions for Build, Assembly, and Test (IBAT) refers to the process used whenever any operation is conducted on hardware, including tests, assembly, and maintenance. Currently, the generation of IBAT documents is time-intensive, as users must manually reference and transfer information from engineering diagrams and parts lists into IBAT instructions. With advances in machine learning and computer vision, however, it is possible to have an artificial intelligence (AI) model perform the partial filling of the IBAT template, freeing up engineer time for more highly skilled tasks. AiBAT is a novel system for assisting users in authoring IBATs. It works by first analyzing assembly drawing documents, extracting information and parsing it, and then filling in IBAT templates with the extracted information. Such assisted authoring has potential to save time and reduce cost. This paper presents an overview of the AiBAT system, including promising preliminary results and discussion on future work.
- Abstract(参考訳): IBAT(Instructions for Build, Assembly, and Test)とは、テストやアセンブリ、メンテナンスなど、ハードウェア上で何らかの操作を行う際に使用されるプロセスを指す。
現在、IBAT文書の生成は時間集約的であり、ユーザはエンジニアリング図や部品リストからIBAT命令に手動で情報を参照し、転送する必要がある。
しかし、機械学習とコンピュータビジョンの進歩により、人工知能(AI)モデルがIBATテンプレートの部分的な充足を実行し、より高度なタスクのためにエンジニアの時間を解放することが可能になる。
AiBATは、IBATのオーサリングにおいてユーザを支援する新しいシステムである。
まず、アセンブリードローイング文書を分析し、情報を抽出し解析し、それから抽出された情報でIBATテンプレートを埋める。
このような補助的なオーサリングは、時間を節約し、コストを削減する可能性がある。
本稿では,AiBATシステムの概要について述べる。
関連論文リスト
- Generative Timelines for Instructed Visual Assembly [106.80501761556606]
この研究の目的は、自然言語の指示を通じて視覚的タイムライン(例えばビデオ)を操作することである。
そこで本研究では,教師付き視覚アセンブリタスクの実行を訓練した生成モデルであるTimeline Assemblerを提案する。
論文 参考訳(メタデータ) (2024-11-19T07:26:30Z) - Human-artificial intelligence teaming for scientific information extraction from data-driven additive manufacturing research using large language models [3.0061386772253784]
近年,データ駆動型アダプティブ・マニュファクチャリング(AM)の研究は大きな成功を収めている。
この結果、多くの科学文献が誕生した。
これらの作品から科学的情報を取り出すにはかなりの労力と時間を要する。
本稿では,AMとAIの専門家が共同で,データ駆動型AM文献から科学情報を継続的に抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T15:43:52Z) - Automated User Story Generation with Test Case Specification Using Large Language Model [0.0]
要件文書からユーザストーリーを自動生成するツール「GeneUS」を開発した。
アウトプットはフォーマットで提供され、ダウンストリーム統合の可能性は人気のあるプロジェクト管理ツールに開放されます。
論文 参考訳(メタデータ) (2024-04-02T01:45:57Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Instruct and Extract: Instruction Tuning for On-Demand Information
Extraction [86.29491354355356]
On-Demand Information extractは、現実世界のユーザのパーソナライズされた要求を満たすことを目的としている。
InstructIEというベンチマークを、自動生成したトレーニングデータと、人手による注釈付きテストセットの両方を含む形で提示する。
InstructIE 上に構築した On-Demand Information Extractor, ODIE をさらに発展させる。
論文 参考訳(メタデータ) (2023-10-24T17:54:25Z) - Read and Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals [69.76245723797368]
Read and Rewardは、Atariゲーム開発者がリリースしたマニュアルを読むことで、Atariゲーム上のRLアルゴリズムを高速化する。
各種RLアルゴリズムは,設計支援による性能向上とトレーニング速度の向上を実現している。
論文 参考訳(メタデータ) (2023-02-09T05:47:03Z) - Task-aware Retrieval with Instructions [91.87694020194316]
そこで本研究では,検索システムのユーザがクエリとともに意図を明示的に記述する,命令による検索の問題について検討する。
本稿では,多様な検索タスクを指示で訓練したマルチタスク検索システムTARTを提案する。
TARTは命令を通じて新しいタスクに適応する強力な能力を示し、2つのゼロショット検索ベンチマークでテクニックの状態を向上する。
論文 参考訳(メタデータ) (2022-11-16T23:13:22Z) - EXPATS: A Toolkit for Explainable Automated Text Scoring [2.299617836036273]
ユーザが様々なATSモデルを迅速に開発、実験できるオープンソースフレームワークであるEXPATSについて紹介する。
また、このツールキットはLanguage Interpretability Tool(LIT)とシームレスに統合できるため、モデルとその予測を解釈および視覚化できます。
論文 参考訳(メタデータ) (2021-04-07T19:29:06Z) - Collective Knowledge: organizing research projects as a database of
reusable components and portable workflows with common APIs [0.2538209532048866]
この記事では、集合的知識フレームワーク(CKまたはcKnowledge)のモチベーションと概要について述べる。
CKの概念は、研究プロジェクトを研究成果物をカプセル化した再利用可能なコンポーネントに分解することである。
長期的な目標は、研究者と実践者を結びつけて、すべての知識を共有し再利用することで、イノベーションを加速させることである。
論文 参考訳(メタデータ) (2020-11-02T17:42:59Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。