Task-unaware Lifelong Robot Learning with Retrieval-based Weighted Local Adaptation
- URL: http://arxiv.org/abs/2410.02995v1
- Date: Thu, 3 Oct 2024 21:11:42 GMT
- Title: Task-unaware Lifelong Robot Learning with Retrieval-based Weighted Local Adaptation
- Authors: Pengzhi Yang, Xinyu Wang, Ruipeng Zhang, Cong Wang, Frans Oliehoek, Jens Kober,
- Abstract summary: We propose a method that efficiently restores a robot's proficiency in previously learned tasks over its lifespan.
Using an Episodic Memory (EM), our approach enables experience replay during training and retrieval during testing for local fine-tuning.
We introduce a selective weighting mechanism that emphasizes the most challenging segments of retrieved demonstrations.
- Score: 8.44345881868211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world environments require robots to continuously acquire new skills while retaining previously learned abilities, all without the need for clearly defined task boundaries. Storing all past data to prevent forgetting is impractical due to storage and privacy concerns. To address this, we propose a method that efficiently restores a robot's proficiency in previously learned tasks over its lifespan. Using an Episodic Memory (EM), our approach enables experience replay during training and retrieval during testing for local fine-tuning, allowing rapid adaptation to previously encountered problems without explicit task identifiers. Additionally, we introduce a selective weighting mechanism that emphasizes the most challenging segments of retrieved demonstrations, focusing local adaptation where it is most needed. This framework offers a scalable solution for lifelong learning in dynamic, task-unaware environments, combining retrieval-based adaptation with selective weighting to enhance robot performance in open-ended scenarios.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z) - Center Loss Regularization for Continual Learning [0.0]
In general, neural networks lack the ability to learn different tasks sequentially.
Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks.
We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
arXiv Detail & Related papers (2021-10-21T17:46:44Z) - Probabilistic Active Meta-Learning [15.432006404678981]
We introduce task selection based on prior experience into a meta-learning algorithm.
We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
arXiv Detail & Related papers (2020-07-17T12:51:42Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z) - Online Constrained Model-based Reinforcement Learning [13.362455603441552]
Key requirement is the ability to handle continuous state and action spaces while remaining within a limited time and resource budget.
We propose a model based approach that combines Gaussian Process regression and Receding Horizon Control.
We test our approach on a cart pole swing-up environment and demonstrate the benefits of online learning on an autonomous racing task.
arXiv Detail & Related papers (2020-04-07T15:51:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.