Decoherence of surface phonons in a quantum acoustic system
- URL: http://arxiv.org/abs/2410.03005v1
- Date: Thu, 3 Oct 2024 21:28:48 GMT
- Title: Decoherence of surface phonons in a quantum acoustic system
- Authors: Camryn Undershute, Joseph M. Kitzman, Camille A. Mikolas, Johannes Pollanen,
- Abstract summary: We study the decoherence of phonons confined in a surface acoustic wave (SAW) resonator strongly coupled to a superconducting transmon qubit.
We report a surface phononic energy decay rate of $kappa_1/2pi=480$ kHz and a pure dephasing rate of $kappa_phi/2pi=180$ kHz.
We discuss possible sources of decoherence in SAW-based quantum acoustic devices and the application of these devices in future quantum acoustic dissipation engineering experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phononic resonators are becoming increasingly important in quantum information science, both for applications in quantum computing, communication and sensing, as well as in experiments investigating fundamental physics. Here, we study the decoherence of phonons confined in a surface acoustic wave (SAW) resonator strongly coupled ($g/2\pi\approx 9$ MHz) to a superconducting transmon qubit. By comparing experimental data with numerical solutions to the Markovian master equation, we report a surface phononic energy decay rate of $\kappa_1/2\pi=480$ kHz and a pure dephasing rate of $\kappa_{\phi}/2\pi=180$ kHz. These rates are in good agreement with the level of decoherence we extract from qubit-assisted spectroscopic measurements of the SAW resonator. We additionally find that the timescales over which coherent driven dynamics and decoherence occur are comparable, highlighting the need to model the composite device as an open quantum system. We discuss possible sources of decoherence in SAW-based quantum acoustic devices and the application of these devices in future quantum acoustic dissipation engineering experiments. The decoherence characterization techniques we employ are broadly applicable for investigating and benchmarking the effects of loss and dephasing on mechanical resonators in the quantum regime.
Related papers
- Generalized quantum measurement in spin-correlated hyperon-antihyperon
decays [11.594851987280764]
We introduce a generalized quantum measurement description for decay processes of spin-1/2 hyperons.
We validate this approach by aligning it with established theoretical calculations.
We employ quantum simulation to observe the violation of CHSH inequalities in hyperon decays.
arXiv Detail & Related papers (2024-02-26T13:54:20Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Studying phonon coherence with a quantum sensor [0.0]
We use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a phononic crystal cavity.
We observe nonexponential energy decay and a state size-dependent reduction of the dephasing rate.
Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.
arXiv Detail & Related papers (2023-02-01T03:52:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Acoustically driving the single quantum spin transition of diamond
nitrogen-vacancy centers [0.0]
We demonstrate the acoustically driven single quantum spin transition for diamond NV centers.
Stress susceptibility of the NV center spin single quantum transition is around $sqrt2(0.5pm0.2)$ times that for double quantum transition.
Our results demonstrate that efficient all-acoustic quantum control over NV centers is possible.
arXiv Detail & Related papers (2020-03-06T20:17:43Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.